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Push the Limit of Acoustic Gesture Recognition
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Abstract—With the flourish of the smart devices and their applications, controlling devices using gestures has attracted increasing
attention for ubiquitous sensing and interaction. Recent works use acoustic signals to track hand movement and recognize gestures.
However, they suffer from low robustness due to frequency selective fading, interference and insufficient training data. In this work, we
propose RobuClIR, a robust contact-free gesture recognition system that can work under different practical impact factors with high
accuracy and robustness. RobuCIR adopts frequency-hopping mechanism to mitigate frequency selective fading and avoid signal
interference. To further increase system robustness, we investigate a series of data augmentation techniques based on a small volume
of collected data to emulate different practical impact factors. The augmented data is used to effectively train neural network models
and cope with various influential factors (e.g., gesture speed, distance to transceiver, etc.). Our experiment results show that RobuCIR
can recognize 15 gestures and outperform state-of-the-art works in terms of accuracy and robustness.

Index Terms—Acoustic sensing, smart devices, gesture recognition, contact-free, data augmentation

1 INTRODUCTION

OTIVATION. Contact-free gesture recognition techniques

facilitate human-computer interaction (HCI) methods.
They enable users to control digital devices without any
physical contact. Imagine that we may simply perform a
gesture nearby a smart speaker at home to switch music or
control speaker volume while chatting in the car. We could
block an incoming call in meeting without touching the
device, or enable contact-free human computer interaction
in virtual and augmented reality applications. These con-
tact-free systems provide immersive user experience and
support a variety of novel applications in gaming, smart
home, and healthcare. For example, contact-free gesture rec-
ognition provides more immersive user experience when
playing VR/AR games. Contact-free gesture recognition
can be useful for smart devices, especially when operating
with touchscreens appears to be particularly inconvenient
(e.g., wearing gloves, devices in pocket). Contact-free user
interaction can also be applied in kiosks in public area to
reduce the risk of spreading germs via touch screens. Such
applications require high accuracy and robustness in vari-
ous application scenarios. In this paper, we aim to design a
contact-free gesture recognition system that can achieve
accurate and robust gesture recognition.

Prior Works and Limitation. Existing RF-based HCI technolo-
gies explore the potential of controlling devices using wireless
signals [2], [14], [27], [44]. Such technologies require special-
ized hardware (e.g., Universal Software Radio Peripheral
(USRP) [14], [27], Frequency Modulated Continuous Wave
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(FMCW) radar [2]), which incurs high costs and prohibits a
wide deployment.

Recent acoustic sensing systems leverage speakers and
microphones, embedded in smart devices, to enable con-
tact-free motion tracking [17], [18], [22], [43], [49]. FingerlO
[22] is able to accurately track moving objects (e.g., a waving
hand) by transmitting Orthogonal Frequency Division Mul-
tiplexing (OFDM) modulated acoustic signals and analyz-
ing the signal variations caused by the moving object. LLAP
[43] is able to track finger movements by measuring the
phase change of the received signals. Strata [49] achieves a
higher accuracy in tracking one moving object by estimating
the Channel Impulse Response (CIR) of the reflected signal.

Those works model the whole finger/hand as a single
reflection point and intentionally neglect weak multi-path
signals. Note that such a single reflection model can effec-
tively enhance its performance in tracking one moving
object. Yet, modeling a hand as a single reflection point can-
not provide sufficient resolution for gesture recognition due
to relatively complex finger movements. For instance, in
order to recognize spread or pinch gesture (illustrated in
Fig. 1), we need to differentiate and track five fingers
simultaneously.

Since it is very hard to accurately model the complex signal
reflections, recent works attempt to leverage neural networks
to automatically extract effective features from received sig-
nals [13], [17]. For example, UltraGesture [17] uses a deep neu-
ral network to extract features from measured CIR magnitude
for identifying different gestures. However, due to insuffi-
cient training data, the trained model cannot handle various
real practical impact factors in practice.

Challenges. Implementing a robust acoustic gesture recog-
nition system is a non-trivial task due to complicated move-
ments of fingers. One challenging issue of acoustic based
gesture recognition is frequency selective fading (FSF) due
to the multi-path transmissions of acoustic signals as well as
the speaker and microphone distortion at high frequencies
(e.g., > 18KHz). Previous work only sends an acoustic sig-
nal at a fixed frequency [17], which may experience
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Fig. 1. 15 types of hand gestures and their corresponding CIR patterns. To standardize the tested gestures, we divide the test gestures into different
categories including (1) the typical gestures involving hand movements along 3 axes in 3D space (slide down/up (Z-axis), push/pull (X-axis), and
slide right/left (Y-axis)); (2) rotation around an axis; and (3) some complex hand gestures (punch, spread, pinch, swipe, tap, double taps, and hover).
To bet;(er depict the test gestures, in the figure, we use — to represent a hand movement along an axis (e.g., X axis), and use a double-headed arrow
(e.g., <) to represent a back-and-forth movement (e.g., punch) along the axis.

dramatic fading in signal magnitude in particular environ-
ments. Intuitively, one can simultaneously transmit acoustic
signals at multiple frequencies to alleviate the impact of FSF
and the signal distortion at high frequencies. However, the
computational cost involved in processing the multi-
frequency signal is high and prohibitive to meet real-time
processing requirement on lightweight smart devices (e.g.,
smart watch).

Another practical challenge arises from insufficient train-
ing data. To ensure robust gesture recognition, the neural
network requires sufficient training data to cover different
variations of gestures under diverse practical scenarios [48].
In practice, it is inconvenient and sometimes impractical to
collect sufficient training data from users.

Our Solution. We propose RobuClIR, a robust gesture rec-
ognition system based on acoustic signals transmitted by
the smartphone, which achieves high recognition accuracy
under various practical impact factors. RobuCIR can iden-
tify 15 standardized gestures, as illustrated in Fig. 1. Robu-
CIR can detect a gesture ranging up to approximately 50cm
from the smartphone.

In our solution, we adopt frequency hopping to mitigate
FSF and carefully design low pass filters to avoid inter-
subframe interference (described in Section 3.2). In particu-
lar, we modulate a known baseband signal, up-convert to
different frequencies, and transmit at each frequency peri-
odically. We regard this periodical signal as a channel mea-
surement frame, which consists of multiple subframes at
different frequencies. To further enhance the robustness of
RobuClIR, different from prior work that only exploits the
magnitude component, we synthetically consider both mag-
nitude and phase components to capture more information
of the multi-path. We notice that the phase component is
generally more robust to interference and noise, which is
promising to achieve high accurate localization and tracking
[4], [43], [49].

To address the challenge of lacking of training data,
instead of manually collecting all training data, we collect a
small amount of raw data and apply a series of selective data

augmentation techniques to enhance the data. Such well-
orchestrated data augmentation techniques come from our
key observation that the variations of the CIR measurements
under different practical impact factors (e.g., different
gesture speeds, distance to transceiver, Non-Line-of-Sight
(NLOS), noises) generate different patterns, which are trace-
able and correlate to the gesture variations. RobuCIR thus
can handle various practical impact factors which may not
be fully captured by the raw data but by the augmented
data. To the best of our knowledge, we are the first to corre-
late the variations of CIR measurements with different prac-
tical impact factors.

Different gestures generate different CIR images with
different patterns, as shown in Fig. 1, which are estimated
by Least Square (LS) channel estimation technique. To iden-
tify gestures, motivated by recently impressive performance
on image classification, we train a classifier using neural
networks via supervised learning. In specific, our classifier
consists of a Convolutional Neural Network (CNN) and a
Long-Short Term Memory (LSTM) network to automatically
extract complicated features from the augmented data and
perform gesture recognition.

Evaluation. We implement all functional components
including signal processing, data augmentation and coupled
deep learning architecture and conduct extensive evaluation
in various experiment settings. We transmit the signal at
three different frequencies to eliminate the frequency selec-
tive fading and conduct ten-fold cross-validation with the
data collected by various types of smartphones. In our exper-
iment, RobuCIR achieves 98.4 percent recognition accuracy
under various practical impact factors in the task of recogniz-
ing the 15 gestures.

Our Contributions. Such a holistic design allows us to
achieve higher channel measurement resolution and suffi-
cient training data, while meanwhile mitigating FSF and ISI
without posing extra computational overhead on light-
weight smart devices. In our experiment, RobuCIR achieves
98.4 percent recognition accuracy under various practical
impact factors in the task of recognizing the 15 gestures.
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We make the following contributions:

e  Weaddress the challenge of frequency selective fading
caused by multipath effect by periodically transmit-
ting the acoustic signals with different frequencies.

e Weleverage the correlation of the CIR measurements
and gesture variations to overcome the challenge of
insufficient training data. The augmented data is
automatically generated without user involvement.

e We implement RobuCIR and conduct extensive eval-
uation. The experiment results show that RobuCIR
outperforms state-of-the-art work in terms of accu-
racy and robustness under various practical impact
factors.

2 BACKGROUND

2.1 Channel Measurement

Channel measurements determine the fading and path loss
of the wireless channel. Channel measurements are repre-
sented with complex values, in which two key parameters,
signal strength and signal phase, can be measured. The sig-
nal strength indicates the signal fading while the signal
phase reveals the propagation delay and distance. As
human gestures could influence the wireless channel, chan-
nel measurements may involve the unique pattern of certain
gestures, which can be used to infer the gesture types.

2.2 Channel Impulse Response

Existing acoustic signal based gesture recognition systems
detect the finger/hand movement by measuring the CIR of
the reflected signal frames. The transmitter modulates a
known signal, up-converts to a high frequency f., and con-
tinuously sends this inaudible audio signal frame. The
frame is then reflected from a moving finger/hand and
received by the receiver. The received frame is down-
converted to generate an imaginary and real components of
the baseband signal.

The acoustic channel can be modeled as a Linear Time-
Invariant system, which is effective to model propagation
delay and signal attenuation along multiple propagation
paths. The received signal can be mathematically repre-
sented as 7[n] = s[n] * h[n|, where h[n] represents CIR of the
acoustic channel, r[n] and s[n] represent the received signal
and transmitted signal, respectively.

In practice, one may estimate the CIR by sending a known
signal frame as a probe. With the received frame, Least
Square channel estimation method can estimate CIR [17],
[49]. In particular, LS channel estimation measures the chan-
nel h = argmin ||r — Mh||?, where M is the training matrix

consisting of transmitted circulant orthogonal codes (e.g.,
training sequence code (TSC) [49], Barker code [17]). CIR
measurement is represented with a set of complex values, in
which each complex value measures the channel information
of a certain propagation delay range and the corresponding
amplitude and phase of the CIR can be obtained.

2.3 Frequency Selective Fading

In wireless communication and acoustic sensing, the emit-
ted signal experiences reflections from objects (e.g., ground,
wall, desks, chairs) in the environment, which results in
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Fig. 2. Overview of RobuCIR.

multipath signals with similar strength in the air. Such mul-
tipath signals might be destructively added together (e.g.,
two signals with phase variation of 7) and cause cancella-
tion of certain frequencies at the receiver, which results in
deep nulls in the received signal strength. FSF could signifi-
cantly affect the signal patterns caused by the gestures and,
hence, degrade the performance of the gesture recognition
systems if we cannot handle it properly.

3 SyYSTEM DESIGN

3.1 Overview

Fig. 2 illustrates the overview of RobuCIR. RobuClIR consists
of three main components, which are Transceiver, Channel
Estimator and Gesture Identifier. In Transceiver, a speaker plays
an inaudible frame for channel measurement and a micro-
phone records the received frame. Within each inaudible
frame, the carrier frequency hops among multiple frequen-
cies to mitigate FSF. Then, Channel Estimator estimates the
CIR with the LS channel estimation. Finally, Gesture Identifier
regards CIR phases and magnitudes measured across a cer-
tain time as a CIR phase image and a CIR magnitude image,
respectively. To improve the robustness of our system, we
perform data augmentation on each CIR image so that the
augmented data can cover various real practical impact fac-
tors. As such, the final model trained with augmented data
can cope with various factors (e.g., gesture speed, distance,
noise, etc.). In particular, the augmented data are used to
train a CNN to automatically extract features and an LSTM
network to perform gesture recognition.

3.2 Design of Transceiver

Fig. 3 illustrates the design of transceiver. The transceiver
consists of a speaker acting as an acoustic transmitter and a
microphone acting as a receiver, which are collocated and
synchronized in a single device. The transmitter sends a
pre-defined signal frame and the receiver measures the CIR
by analyzing the received signal frame [17], [49]. In particu-
lar, the transmitter sends a 26-bit Training Sequence Code
that has good autocorrelation property and facilitates chan-
nel measurements [37]. The TSC are then up-sampled and
up-converted to the carrier frequency f, before transmis-
sion. To ensure the transmitted frame are inaudible, the car-
rier frequency is set to be higher than 18 KHz (i.e., f, > 18
KHz). To avoid inter-subframe interference (ISI), previous
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Fig. 3. Design of transceiver.

works add guard intervals (GI) between frames. In particu-
lar, zero samples are added between frames so that the ech-
oes of current frame would not be mixed in the following
frames.

3.2.1 Mitigate Frequency Selective Fading

Existing works modulate and up-convert the pre-defined TSC
symbols to a single frequency. Single-frequency based method
may suffer from FSF, since the audio signals reflected from
multiple objects may add up destructively with each other,
which greatly decreases the system performance.

To better understand how FSF influences the channel
measurements, we conduct experiments and measure the
CIR magnitude and phase when transmitting at multiple
frequencies. In the experiment, we perform push and pull
gestures 5 times in front of the transceiver. We send the
BPSK modulated TSC at three frequencies.

Fig. 4 shows the CIR magnitudes measured during the
experiment. In the figure, X-axis represents time, while
Y-axis represents CIR tap positions. The brightness repre-
sents the CIR magnitude. Each tap corresponds to a certain
delay range and reflected signals with similar propagation
delays are summarized in the same tap. In Fig. 4, when
transmitting at f. (upper panel), the CIR magnitude
changes substantially due to pull and push activities. When
transmitting at f» (mid panel), due to frequency selective
fading, the CIR magnitude dramatically decreases and
exhibits less clear patterns. Similar to the influence on CIR
magnitude, frequency selective fading also affects the phase
measurements at different frequencies. The experiment
results indicate that the frequency selective fading, if not
handled properly, could dramatically influence the channel
measurement results, leading to low accuracy and degraded
robustness in gesture recognition.

Along with the magnitude, we can also obtain the phase
information from the CIR measurements. We conduct
another experiment where we move a cardboard near the
transceiver. First, the cardboard keeps static for around 5s
and then moves backward for around 5s along a straight
line at a constant speed. Note that the hardware of transmit-
ter and receiver introduce constant phase offset throughout
the experiment, which therefore can be removed by calcu-
lating the phase difference between two adjacent phase
measurements (discussed in detail in Section 3.2.3). Figs. 5a
and 5b plot the measured phase values when transmitting
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at fa and fe, respectively. Among all taps, only three taps
are plotted for better illustration. We observe the linearly
increasing pattern in some taps as path length increases
when the cardboard moves backward. However, due to fre-
quency selective fading, CIR phase also exhibits different
sensing qualities at different carrier frequencies. Comparing
the Tap 1 phase values (upper panels) in Figs. 5a and 5b, we
find that the moving object almost causes no impact to tapl
at f.;, while phase exhibits clear increasing patterns in tapl
at feo. When applying fc2, all three taps are affected. This is
because the multipath signals with corresponding delay
similar to tapl~tap3 change when we move the cardboard
forward and backward. The experiment results indicate
that similar to the influence on CIR magnitude, frequency
selective fading also affects the phase measurements at dif-
ferent frequencies.

Transmitting at multiple frequencies (e.g., OFDM) could
enhance robustness against FSF since different frequency
components are less likely to add up destructively at the
same time. However, existing multi-frequency based meth-
ods incur high computational overhead due to Fast Fourier
Transformation (FFT) and Inverse-FFT (IFFT) operations
[22], [43]. In addition, OFDM-based method needs to add
data-irrelevant Guarded Interval to remove ISI, which
increases the time of a frame and decreases the time resolu-
tion for frame-based gesture recognition. Instead, we adopt
frequency hopping to periodically transmit at different
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Fig. 5. CIR phase measurements of moving cardboard away from
transceiver.
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carrier frequencies to alleviate FSF. In particular, we trans-
mit at a certain carrier frequency (e.g., f.;) and hop to an
adjacent frequency (e.g., f.;). Thus, the whole channel mea-
surement frame consists of N subframes transmitted at N
different frequencies. Note that the frequency hopping
scheme does not involve any FFT and IFFT operations,
which reduces the computational overhead when extracting
CIR measurements. Such a reduction of processing time is
important especially when it is applied to resource-con-
strained smart devices.

However, due to sudden frequency transition from f,; to
fe; at the edge of two adjacent subframes, the transmitted
signal becomes audible to users. To keep the whole frame
inaudible throughout the frequency hopping process, we
apply a bandpass filter with passband [f. —Z, fov + 3],
which effectively filters out jitters at the edge of adjacent
subframes, where B denotes the bandwidth. In practice, we
append the first subframe and prepend the last subframe to
a frame before passing through the bandpass filter. Then we
remove the appended as well as the prepended subframes
after applying the bandpass filter. The filtered inaudible
frame can be saved as an audio file and played periodically
at the transmitter.

The receiver starts to record the reflected frame immedi-
ately after the first sample is emitted by the transmitter. To
detect the position of the first sample in the received frame,
we calculate the Pearson Correlation Coefficients (PCC) of
the transmitted and the received audio samples and locate
the peak of correlation. Once the first sample of the frame is
detected, the boundary of subframes in the current frame
and the subsequent frames can be easily located and per-
fectly synchronized due to fixed length of the subframe.
Note that the frequency hops periodically from f.; to fon
within each received frame. The receiver down-converts the
frame by multiplying each subframe with its corresponding
cos (2nf,t) and —sin(2nf,t), where i€ {l,...,N} as
shown in Fig. 6b. The down-converted frame then passes
through a lowpass filter to filter out high-frequency compo-
nents. Finally, the complex vector r(t) of the same frequency
are used for extracting CIR magnitude as well as CIR phase.

3.2.2 Remove Inter-Subframe Interference

Existing methods insert data-irrelevant cyclic prefix (.e.,
multiple zeros) to avoid ISI, as shown in Fig. 6a. However,
our down-conversion technique can naturally remove the
ISI without inserting any prefix. To see how such a down-
conversion technique avoids inter-subframe interference,
we assume the current subframe is with frequency f.;,
which can be interfered by previous /N subframes. Thus, the
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currently received subframe can be represented as y(t) =
Z A; cos (2 f.it + 0;), where A; is the amplitude of the
subframes and 6; is the phase offset caused by multipath
effects, i € [1, N]. By down-converting with cos (27 ft), j €
[1, N], we have

ZA cos (27 fit + 0;) x cos(2m f.it)

N
ZA? (cos (27 (fei + fej)t + 0;) + cos (27 (fei — [e)t +6:))].
=1

high—frequencycomponent low—frequencycomponent

(1)

Looking at low-frequency component in Eq. (1), we have

A;
5 cos (2n(fui = foj)t + 6i)
N 2)
)+ Z — €08 (27(fei — fej)t + 6;).

i= 17;&]

M‘;’:; 1M<

The high-frequency components in Eq. (1) and the second
term in Eq. (2) can be simultaneously removed by applying
a low-pass filter with a cutoff frequency set according to the
difference of carrier frequencies (i.e., min(|foi — fej|), % # 7).
Besides, the cutoff frequency should exceed the frequency
of the subframe such that the subframe can be recovered
accurately. After passing the low-pass filter, we obtain
5 cos (0;), where 6; = cos (27f7;), and 7; is the propaga-
tion delay. Since the speed of sound is known, with 7; we
can calculate the distance between the transceiver and the
reflecting point.

To evaluate the effectiveness of our design, we conduct an
experiment to compare ISI with/without our filtering
method in Fig. 7. We transmit the first subframe at f, fol-
lowed by the second subframe at f,», and the carrier fre-
quency hops at around the 320th sampling point. In the
experiment, to better visualize ISI, the first subframe trans-
mits TSC bits, while the second subframe contains zero sam-
ples, only to measure whether the first subframe would
influence the second subframe. Fig. 7a shows the received
frame down-converted with the same carrier frequency f.
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for both subframes. We see that the transmitted signal
indeed echoed after the frequency hopping, which could
have distorted the second subframe transmitted at the same
fe1. Fig. 7b plots the received signals when the first subframe
is down-converted with frequency f,;, while the second sub-
frame with zero samples is down-converted with an adjacent
frequency f. We see that the first subframe transmitted at
fe1 is correctly down-converted, and more importantly there
is no interference or distortion in the second subframe. The
experiment result shows that our filtering method can effec-
tively remove Inter-symbol Interference.

3.2.3 Extract Effective CIR Phase and Magnitude

The extracted channel measurements involve both static
objects in the environment (e.g., direct path from speaker to
microphone, wall, desk, etc.) as well as dynamic objects
(e.g., people passing by, etc.). Thus, the CIR measurements
are the combinations of all signals reflected from both static
and dynamic objects within the sensing range. To avoid the
influence of static objects as well as moving objects irrele-
vant to the hand gesture, we need to extract the reflected
signal from hands and fingers close to the transceiver.

Focus on Nearby Objects. In order to mitigate the influence
of distant moving objects, we need to filter out the reflected
signal from distant objects and only keep reflected signal
from hands and fingers close to the transceiver. In the chan-
nel measurement, each tap of CIR corresponds to a certain
delay range and reflected signals with similar propagation
delays are grouped into one tap. Therefore, the tap index
(e.g., Y-axis in Fig. 4) indicates the distance between the
reflecting objects and the transceiver: the smaller the index,
the closer to the transceiver. Thus, the detection range D,
can be set according to the number of taps L, since we have
D,=Lx ﬁ, where v is the speed of sound and f; is the
sampling frequency. By tuning the detection range and only
keeping a few effective taps, we can filter out the impact
caused by objects outside a certain range to improve system
robustness. This method ensures robust CIR measurement
inside the detection range, even with people walking nearby
but outside the detection range.

Focus on Moving Objects. The changes of combined phase
and magnitude of CIR are illustrated in Fig. 8a. OC repre-
sents the static component with constant magnitude and
phase, while CA and C'B are the dynamic components with
varying phases and magnitudes. The direct transmission
from speaker to microphone and the static background
reflection from the environment jointly comprise the static
component. Due to the dynamic components, the combined

(b) CIR magnitude.

(c) CIR phase.

components OA and OB change accordingly. Note that the
CIR measurement only measures the combined compo-
nents, while the static component and the dynamic compo-
nent cannot be directly measured. To cancel the static
component and extract the dynamic components from the
measured CIR, we calculate the CIR difference between two
consecutive measurements at time ¢ — 1 and ¢. In addition,
the constant phase offset caused by the transmitter and
receiver hardware can be removed as well by measuring
the CIR differences. By doing this, the dynamic component
can be extracted and the effects caused by surrounding
static objects can be removed.

Figs. 8b and 8c show the CIR magnitude and phase of
the same tap at the same carrier frequency extracted from
the second experiment in Section 3.2.1. Due to the strong
direct transmission from speaker to microphone, the pat-
tern of original CIR magnitude and phase is not clear
(upper panel in Figs. 8b and 8c). However, we observe
that the extracted phase changes clearly exhibit linearly
increasing patterns. Besides, we observe that CIR phase
and magnitude vary differently since magnitude captures
signal attenuation while phase captures propagation dis-
tance. Therefore, we may obtain more reliable information
using both measurements.

3.3 Gesture Identifier

The main objective of the gesture identifier is to classify the
CIR measurements and recognize different gestures. We
notice that the CIR magnitude and phase across a certain
time over multiple taps can be regarded as a CIR magnitude
image and a CIR phase image, respectively. CIR images
extracted from different frequencies can be considered as
RBG channels. Recent advances in neural network and its
breakthrough in image recognition motivate us to leverage
such a powerful classification tool and build the gesture
identifier. To this end, we weave the CIR measurements
into tensors (named CIR images), which is similar to images
in the context of image classification.

However, the neural networks require a huge amount
of effective training data to achieve high accuracy and
robustness. Ideally the training data should cover various
practical scenarios. Yet, it takes a long time and a lot of
effort to collect a sufficient amount of quality data in prac-
tice. To ease the pain of data collection, we conduct data
augmentation to enrich our training data so that the aug-
mented data can reflect different variations of CIR meas-
urements without manually collecting the data in all
possible scenarios.
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Fig. 9. CIR phase and magnitude of push and pull.

3.3.1 Impact Factor Investigation

The data augmentation technique relies on our key observa-
tion that the CIR measurements vary along with the gesture
variations (e.g., gesture speeds, angles, positions and etc.).
Based on our initial measurement results, we mainly con-
sider five factors that could affect the CIR data in real practi-
cal impact factors including gesture speed, distance to
microphone, angle of arrival, blockage of line-of-sight path,
and background noise. We then apply data augmentation
techniques that are widely used in image processing [9],
[39], [50] on original CIR data (e.g., translation and scaling)
so that the augmented CIR data can cover potential scenar-
ios and the trained models can cope with the above influen-
tial factors.

Different Distances to the Receiver. In commodity smart-
phones, the speaker and microphone are typically collo-
cated and built into a single device. To measure the
influence of the distance between a hand and the trans-
ceiver, we perform push and pull at a distance between
hand and transceiver ranging from Ocm to 20cm, and then
20cm to 40cm in front of the transceiver, respectively.
Figs. 9a and 9b show the CIR magnitude (upper panel) and
phase measurements (lower panel), respectively.

Comparing Figs. 9a and 9b (upper panel), we observe
vertical drift in tap indexes in CIR magnitude measure-
ments. That is because the gestures are performed at differ-
ent distances to the transceiver. A larger tap index indicates
a further distance to the transceiver. Similarly, we find cor-
responding shifts in CIR phase measurements. As illus-
trated in Figs. 9a and 9b (lower panel), we observe similar
linearly increasing patterns in CIR phase measurements.
Therefore, CIR measurements of gestures performed at dif-
ferent distances to the smartphone can be emulated by verti-
cal drifts in tap indexes within the sensing range of the
receiver.

Different Speeds. To illustrate the impact of different mov-
ing speeds of gestures, we perform push and pull at a rela-
tively slow speed in front of the transceiver within 20cm.
Fig. 10 shows the CIR magnitude for all taps and CIR phase
for one particular tap. The CIR phase rotation indicates the
path length change caused by the moving hand. The key
observation is that the CIR measurements corresponding to
the gesture expand in time in both CIR magnitude and
phase compared to Fig. 9a due to the slower speed. To com-
pensate for different speeds of gestures, we perform data
augmentation by horizontally expanding or contracting an
original CIR measurement to emulate different speeds. In
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Fig. 10. Push and pull at slow speed.

our work, a gesture takes at least 0.4s and each frame lasts
for 19.5ms (6.5ms/subframe for 3 subframes). Around 20
frames are received in 0.4s for each frequency to estimate
the CIR. We notice that, when less than 20 frames are used
for CIR measurement, the gesture may not be correctly
identified.

Blockage of Transceiver. People may attempt to control
their smart devices under NLOS case. To simulate this sce-
nario, we place a smartphone inside a cotton bag to capture
the moving hand. In upper panel of Fig. 11, we observe less
bright patterns if we directly use raw CIR data. In practice,
NLOS may cause signal attenuation, which results in very
small values of CIR magnitude.

To address this problem, we use the Min-Max Normali-
zation method to scale and normalize the CIR magnitude
measurements. After normalization, all the magnitude val-
ues are scaled to the same level (i.e., 0 ~ 1) such that the
impact of signal attenuation can be mitigated. The lower
panel in Fig. 11 shows the normalized CIR measurements of
the raw CIR data in the upper panel. After normalization,
we observe similar patterns compared to the scenario with-
out any blockage in Fig. 9a. We observe consistent patterns
when we place a thick paper between transceiver and hand.
On the contrary, the CIR phase measurements are not
greatly affected due to similar relative moving distances of
hand. In all experiments, we conduct normalization to all
raw CIR data before data augmentation.

Noisy Environment. To evaluate the impact of background
noise, during CIR measurement, we use a smartphone to
play music 5cm away from the receiver. In this case, the
received signal is a mixed signal of both TSC signal and the
background music signal. Fig. 12 (upper panel) shows the
frequencies of the transmitted TSC signal and Fig. 12 (lower
panel) shows the received mixed signal, respectively. In the
figure, we see that the music resides in the frequency band

Push and Pull with Blockage

Time (sec)
Push and Pull with Blockage after Nomalization

o )

Time (sec)

Fig. 11. Push and pull with blockage.
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Fig. 12. Frequencies of the Transmitted and Received frame.

much lower than the transmitted inaudible signal. As such,
the receiver can separate the transmitted inaudible signal
from the background noise in the environment (e.g., music)
in the frequency domain.

Intuitively, we can add a high-pass filter before down-
conversion to remove the low frequency components. In
fact, our down-conversion and demodulation method
(described in Section 3.2.1) can filter the music and other
noises in the low frequency band. Suppose the highest fre-
quency component in music is A, cos (21 f,,t), where A,,
and f,, denote the corresponding amplitude and frequency.
In down-conversion step, we have

Ay, cos (2 fint) x cos (2n f.t)

A'm, (3)
5 [cos (2n(fr + fo)t) + cos (2n(f. — fm)t)],

where f, is the corresponding carrier frequency. We notice
that the frequencies of most music signals are lower than 8
KHz. In contrast, the TSC is transmitted at much higher fre-
quencies over 16 KHz. Hence, the frequency components
fm + feand f,, — f. can be filtered out when f,, < f. — g.

Actually, many other background noises (e.g., human
voice, fans, air conditioner, traffic noise, etc.) reside in low-
frequency bands, which can be similarly filtered out by our
down-conversion and demodulation method. Therefore,
there is no need to add a high-pass filter before down-con-
version. In other words, the down-conversion and demodu-
lation method is inherently robust against background
noises.

Different Angles. In order to evaluate the impact of angle-
of-arrival on the transceiver, we perform gestures around
the transceiver at different angles within 20 cm range to the
transceiver. In particular, we divide the 0° ~ 180° area in
front of the transceiver into three 60° sectors (i.e., 0° ~ 60°,
60° ~ 120°, and 120° ~ 180°) and perform push and pull
multiple times in each sector. The experiment results show
that the CIR measurements exhibit similar patterns when
we perform the same gesture from different angles
(0° ~ 60°, and 120° ~ 180°) as in Fig. 9a (60° ~ 120°). This is
because both speaker and microphone are omnidirectional.
In fact, omnidirectional speakers and microphones are
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widely used in commodity smart devices in order to achieve
good quality in all directions. Besides, the speaker and the
microphone are collocated in a single device with short dis-
tance. As such, the impact of angle-of-arrival on the CIR
measurement is limited. Thus, in this work, we do not aug-
ment the raw measurements for different angle-of-arrivals.

In summary, we find that the last three factors (i.e., block-
age, noise and angle-of-arrival) do not require any particular
data augmentation, while different speeds and distances to
the receiver do influence the CIR measurements and need
careful treatment. Note that different hand sizes of users
may influence the CIR measurements. However, with multi-
ple taps, our method can reduce the impact of hand sizes.

We assume that the gestures are performed while the
user is standing or sitting still with static torso but only
moving his hand. In practice, people often perform gestures
at distance 10 ~ 50cm to the transceiver, which indicates
tap indexes ranging from 30 to 150. We guarantee the suc-
cessful transmission and reception of the audio signal
within this detection range. Thus, we vertically shift a raw
CIR data according to the targeted tap index ranges. One
may freely adapt the tap index range according to different
practical impact factors by tuning appropriate volume of
speaker if the distance between hand and transceiver
increases. On the other hand, we find that the largest differ-
ence between the speeds for the same gesture is typically at
most 5x (i.e., 0.4s to 2s). As such, the number of horizontal
expanding and contacting rates are varied from 2 to 5.
Although the largest speed difference in our dataset is up to
5 x , the data augmentation technique is not limited to this
range and can be extended to a larger range to emulate
more variances in practice (e.g., 4s for push in Fig. 10). We
randomly combine the above settings for various gesture
speeds and distances and augment 100x for each collected
gesture to emulate the gestures performed under various
practical scenarios.

3.3.2 Gesture Recognition

We input the augmented training CIR data into a classifier
to identify different gestures. Recently, CNN exhibits signif-
icant advances in image recognition while LSTM is promis-
ing to process time series data. Therefore, our classifier
consists of a CNN for extracting significant features of CIR
images and an LSTM network for gesture identification.

In specific, we separately process CIR magnitude and
phase and automatically extract features with two indepen-
dent CNNs but with the same architectures. We apply a
CNN with five convolution layers. Each input of the first
convolution layer is a CIR image with size [K x L x NJ,
where L is the number of taps, K denotes the number of
consecutive subframes aggregated during a certain period
and N is the number of frequencies. Note that similar to the
real images, CIR images extracted from different frequen-
cies can be regarded as different image channels (e.g., RGB
channels). We use 32 kernels with size [5 x 5 x N] to scan
the input image, followed by a max-pooling layer with [2 x
2] kernel and stride length 2. The design of the remaining 4
convolution layers are similar to the first layer with one ker-
nel size [5 x 5] and three kernel sizes [3 x 3], and the number
of kernels are set to two 32 and two 64, respectively. The
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activation function is ReLU. We set a fully connected layer
with size 512 to output the feature vector. The extracted fea-
tures of CIR magnitude and phase are then processed sepa-
rately with two individual LSTM.

When performing different gestures (e.g., up and down,
left and right), the same feature extracted with CNNs may
appear in different order and the order matters in distin-
guishing the different gestures. Unlike CNN, LSTM is capa-
ble of memorizing the context information in sequential
data [10], which can capture the temporal information of
the gestures. In our implementation, the LSTM architecture
takes multiple outputs of the CNN across time into one vec-
tor as the input data. We use one stacked LSTM layer
grouped by 8 memory cells. A softmax function layer is
used after the LSTM layer to predict the gesture types. The
output of the LSTM is a probability vector indicating the
likelihood of different gestures. Note that, we separately
build two LSTMs for CIR magnitude and phase image and
generate two probability vectors. The gesture type is then
determined by the equally weighted sum of the two proba-
bility vectors.

4 EXPERIMENT AND EVALUATION

4.1 Experiment Setting

Parameter Setting. To transmit channel measurement frame
with frequency hopping, frequencies that satisfy with con-
ditions in Section 3.2.2 can be applied to mitigate the fre-
quency selective fading and remove inter-subframe
interference. In our experiment, RobuCIR emits inaudible
signals at three frequencies 18 KHz, 20 KHz and 22 KHz,
respectively. We notice that the acoustic signals played at
the maximum volume may still be noticed by some users,
especially when they really pay attention in quiet rooms.
Users can adjust the volume to their comfortable level (e.g.,
75 percent of maximum volume) without affecting much
the system performance.

In our design, we choose a 26-bit TSC, which has excel-
lent autocorrelation and synchronization property [28]. The
up-sampling rate is set to 12. Therefore, a single TSC symbol
is represented by 12 audio samples and each transmitted
subframe contains Npgc x 12 = 312 audio samples, which
takes 6.5ms in transmission with sampling rate of 48 KHz.

Data Collection. We implement RobuCIR on a Samsung S9
Plus, a Samsung S7 Edge and a Google NEXUS5 phone.
Experiment results show that the diversity of smartphones
(e.g., signal distortion at high frequencies) can be mitigated
by frequency hopping, normalization, and data augmenta-
tion. We invite 8 volunteers (5 males and 3 females) to per-
form 15 types of gestures. Each gesture is repeated 6 times
(3 for each hand) under 5 practical impact factors described
in Section 3.3. The users stand or sit still at 0.5m to Im from
the device and perform gestures with relatively static torso
and move their hands within the detection range of up to
0.5m. Because it is very hard to measure the exact speed of a
gesture, instead, we use the time duration of the gesture to
represent different speeds of gestures. The largest speed dif-
ference in our dataset is 5x (e.g., from 0.4s to 2s) and a ges-
ture with faster speed has shorter duration, and vice versa.
We place the test smartphone into a cotton bag to emulate
the NLOS scenario. The gestures are performed at different
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angles to the device ranging from 0° ~ 180° within 20cm
range to the transceiver. In particular, we divide the 0° ~
180° area in front of the transceiver into three sector with
the same angle. Performing gestures at different sectors
results in the received signal arrived in different angles. In
the noisy environment scenario, we use another mobile
phone as an external speaker to play music with the largest
volume placed 0.5m away from the target device. The ges-
tures are performed at different time and different environ-
ments containing some rich multipath office rooms between
size 10 x 8 x 3m*® and 4 x 4 x 3m® with different layouts.
These office rooms are surrounded by furniture, computers
and small objects nearby, which result in different signal
decay. People are allowed to move near the target device
when we are collecting the data. In total, we collect 3600
real gesture samples.

Benchmark. We evaluate the performance in comparison
with the state-of-the-art UltraGesture [17] as our bench-
mark. UltraGesture is configured and optimized according
to [17] to achieve its best performance. We set the same
number of estimated taps to L = 140 in magnitude measure-
ments. We choose K = 32 and Ny, = 5 such that the LSTM
takes features of K x Ny, x 6.5ms = lsec as each input.

Model Training and Gesture Recognition. We use 10-fold
cross-validation to evaluate the robustness of the system.
Each round of cross-validation involves training a new
model with the collected samples from 6 users and testing
with the collected samples from the other 2 users. We make
sure that the training data and the testing data are collected
from different users and different rooms in each round. For
each gesture in the training group, we conduct data aug-
mentation with rate = 100 x . We notice that the augmented
samples are consistent with the corresponding real-world
scenarios.

The classifier are trained using TensorFlow in a high-end
server with Intel(R) Xeon(R) E5-2620 v4 CPU @2.10 GHz, 32
GB memory, and two Nvidia GTX 1080 Ti GPU graphics
cards. It takes around 65s for each training iteration. Note
that the model training is a one-off procedure and can be
carried out offline. The size of the model when using 5-layer
CNN and 8-cell 1-layer LSTM is around 5.5M. We use the
high-end server with the same specifications to simulate a
cloud/edge server and conduct performance evaluation.

4.2 Evaluation
4.2.1 Overall System Performance

Fig. 13 shows the overall confusion matrix of our RobuCIR
system for all 15 gestures performed at different rooms with
different environments. Some rooms are with rich multipath,
which are surrounded by furniture, computers and small
objects nearby, while some rooms are relatively empty with
less multipath. The test data was collected at different distan-
ces to the transceiver and the volunteers perform the gestures
at their comfortable speeds in office rooms. RobuCIR achieves
an average recognition accuracy of 98.4 percent, and each ges-
ture exceeds 95 percent accuracy even under different practi-
cal impact factors. Different environments with different
signal fading have limited impact on system performance,
since the detection range can be set with the number of CIR
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Fig. 13. Overall performance of RobuCIR.

taps to filter out interference and multipath reflection outside
the detection range (e.g., people walking around).

We evaluate the recognition accuracy under different
practical impact factors, as shown in Fig. 14. The accuracy of
all gestures exceeds 96 percent, which demonstrates high
robustness of RobuCIR under various scenarios. The accu-
racy when performing gesture at different speeds and differ-
ent distances to the transceiver is slightly lower than other
three scenarios since these two scenarios may cause larger
variations in CIR measurements while other three scenarios
do not introduce dramatic influence in CIR measurements.

4.2.2 Improvement of Robustness

To evaluate system robustness of RobuCIR compared to the
existing works, we compare the performance with the state-
of-the-art work UltraGesture [17] which is trained and eval-
uated with the same dataset. We set the same parameters as
presented in UltraGesture and evaluate both RobuCIR and
UltraGesture under various practical impact factors. In our
experiment, we use 10-fold cross validation and take the
average accuracy, which is compared to the UltraGesture.
The standard deviation of 10-fold cross validation is less
than 1.4 percent with the lowest and highest accuracy of
96.9 and 100 percent, respectively. Fig. 15 shows the recog-
nition accuracy of RobuCIR and UltraGesture.

As illustrated in Fig. 15, RobuCIR substantially outper-
forms UltraGesture and achieves overall recognition accuracy
of 13 percent higher than UltraGesture. When performing ges-
tures at different speeds and different distances to the trans-
ceiver, RobuCIR remains robust with an accuracy of over
96 percent, while the performance of UltraGesture dramati-
cally decreases to 75 and 77 percent mainly due to FSF and
considerable impacts on CIR measurements under those two
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Fig. 14. Performance with different practical impact factors.
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Fig. 15. Results of RobuCIR and UltraGesture.

scenarios. For other three practical impact factors, the perfor-
mance of UltraGesture exceeds 90 percent while RobuCIR
achieves higher accuracy of over 98 percent since the aug-
mented training data covers different variations of gestures
under practical scenarios.

4.2.3 Impact of Frequency-Hopping

To evaluate the frequency hopping scheme, we evaluate
RobuCIR with different single-frequency signals. In this
experiment, we separately train three neural networks
according to different frequencies. To focus on the impact of
frequency-hopping scheme, we keep all the parameters
unchanged. Fig. 16 illustrates the recognition accuracy of
RobuClIR under different practical impact factors evaluated
using three single-frequency signals.

We observe that the performance of RobuClIR varies under
the same practical impact factors when transmitting different
single-frequency signals. When only transmitting signal with
frequency?2, the performance decreases significantly to 81 and
78.2 percent under different speeds and distances to trans-
ceiver scenarios since the measured signal might be destruc-
tively added up when a hand is at a specific location. As such,
the extracted CIR measurements fail to reflect the patterns of
corresponding gestures. In contrast, when applying fre-
quency-hopping scheme, we can simultaneously acquire con-
sistent CIR measurements derived from other frequencies
(i.e., frequencyl and frequency3). Therefore, more effective
features can be extracted by the neural networks, which
enhances the system robustness.

4.2.4 Impact of Data Augmentation

We vary the data augmentation rates (i.e., 5x ~ 100x) and
train classifier with different augmented data. In this experi-
ment, we transmit TSC using frequency-hopping scheme
with three carrier frequencies, and other parameters remain
the same.

The results in Fig. 17 show that the recognition accuracy of
RobuCIR under all scenarios improves as the augmentation
rate increases. In particular, the accuracy when performing
gesture under different speeds and distances experiences
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Fig. 16. Accuracy without frequency-hopping.
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higher increase than other three scenarios since data augmen-
tation is carefully applied under these two scenarios and a
larger augmentation rate covers more variations of the ges-
ture. As the augmentation rate raises to 100 x , the accuracy
for each scenario exceeds 96 percent. The experiment results
demonstrate that the data augmentation techniques indeed
provide more insights and quality data to the neural networks
and help improve the system robustness.

4.2.5 Impact of Neural Network Settings

1) Impact of CNN architecture: To evaluate the impact caused
by the CNN settings and its efficacy in extracting useful fea-
tures, we vary the number of CNN layers from 2 to 7 while
keeping the LSTM architecture unchanged. We transmit the
signal with frequency hopping scheme and augment the
training data 100 x . For each network, we set the first layer
with [5 x 5] kernel and the rest layers with [3 x 3] kernel. A
max-pooling layer with [2 x 2] kernel and stride length 2 is
added after each layer. The number of kernels for the first
two layers is 64 and the rest is 32. During CNN training
stage, we notice that the 5-layer CNN generally start to con-
verge after 100 iterations for an augmented training dataset
of 180000 samples. Therefore, we set the number of itera-
tions to 100 when training models with different number of
convolution layers.

As depicted in Table 1, we observe that using more num-
ber of convolution layers achieves better performance. We
have tested CNN with a number of layers larger than 5 and
find not much improvement in performance. Therefore, we
choose 5-layer CNN for extracting the features.

2) Impact of LSTM architecture: In this experiment, we vary
the number of LSTM cells from 2 to 8 while keeping the
number of CNN layers to 5 and other experiment settings
unchanged. The results show that with the number of cells
in LSTM layer increases, the system performance improves
correspondingly, as in Table 2. However, the marginal gain
of further increasing the number of cells in LSTM layer
beyond 8 is small. As such, the number of cells in our LSTM
layer is set to 8.

TABLE 1
Performance With Varied # of CNN Layers
# of layers 2 3 4 5 6 7
precision 0.94 0.95 0.96 0.99 0.99 0.99
recall 0.93 0.94 0.95 0.98 0.99 0.99
F} score 0.93 0.95 0.95 0.98 0.99 0.99

_ precisionxrecall
Fl score =2 X precision+recall
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TABLE 2
Performance With Varied # of LSTM Cells
# of cells 2 4 6 8 10
precision 0.91 0.93 0.98 0.99 0.99
recall 0.90 0.92 0.97 0.98 0.98
Iy score 0.90 0.92 0.97 0.98 0.98

precisionxrecall

FI score =2 X precision+recall

4.2.6 Execution Time

We run 20000 inferences and measure the average execution
time. Table 3 shows the execution time of RobuCIR at each
processing stage. Frame detection by calculating correlation
coefficient is performed every time before a gesture and
down-conversion step is needed throughout the CIR mea-
surement processing stage, which take approximately 1.3 ms
and 2.2 ms, respectively. LS estimation for generating CIR
magnitude and phase takes a bit longer time of 4.8ms depend-
ing on the number of configured taps. Our trained deep learn-
ing model can process each CIR measurement within an
average of 23 ms at the high-end server. As a result, the execu-
tion time of RobuClIR is approximately 31 ms. We note that
the acoustic data needs to be offloaded to a cloud/edge server
for processing, which involves extra round-trip time depend-
ing on network conditions.

Our current implementation of RobuCIR primarily focuses
on enhancing the robustness of the acoustic sensing perfor-
mance. To reduce the computational overhead at the mobile
device side, we offload the computation-intensive task
involved in gesture recognition to the high-end server. With
this design consideration, we expect to support lightweight
resource-constrained smart devices (e.g., smart speaker, smart
watch), which cannot immediately afford the computational
overhead at this moment. In our experiment, we use smart-
phone to emit and receive the acoustic signal. The received
acoustic signal is saved as a file in the smartphone. The file is
wirelessly transmitted to the high-end PC using file transfer-
ring APP via WiFi. We notice that many wired technologies
can be used to transfer the file from the device to the server
such as 5G, WiFi, Bluetooth and etc. In our case, we ignore the
transferring time because the file can be transferred to server
in real-time once it has been created if under good network
conditions. However, such offloading manner will introduce
extra delays under bad network condition.

Recent advances in running deep neural network models
on mobile devices have achieved remarkable results through
model compression, cloud-free DSP, system optimization,
etc. [5], [6], [8], [12], [16], [46], [50]. DeepASL [5] designs a
transformative deep learning-based sign language transla-
tion technique and applies the trained neural network to the
devices with processing latency in ms-level. NestDNN [6]

TABLE 3
The Running Time of RobuCIR

CIR measurements Calculation Gesture Recognition

Coupled NN model
23ms

Down-conversion LS
2.2ms 4.8ms

Frame detection
1.3ms
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enables resource-aware multi-tenant on-device deep learn-
ing by dynamically selecting the optimal resource-accuracy
trade-offs, which is applied to the mobile devices with lim-
ited resources. DeepMon [12] employs a VGG-VeryDeep-16
deep learning model on smartphones by applying a suite of
optimization techniques and can classify an image within a
second. To avoid the extra latency involved in the network,
one may embed the trained model and directly run on smart-
phones or even lightweight smart devices by leveraging the
latest development of mobile computing. For example, Ten-
sorflow Lite [38] can be used to run machine learning models
on mobile and embedded devices with low latency. We plan
to study this problem for future work.

5 DiscussION

Privacy. As we use speakers and microphones to measure
CIR data and need to offload to a cloud/edge server to pro-
cess the CIR data, users may be concerned whether such
CIR data would leak private information (e.g., private con-
versation). As a matter of fact, the CIR is measured in the
high frequency band (e.g., > 18 KHz), and only the pre-
processed data will be offloaded to the server. It means that
no conversation will be transmitted to the server.

Power Consumption. Current version of RobuCIR has not
yet been extensively optimized for energy efficiency. In
working mode, it needs to constantly transmit and receive
acoustic signals to measure CIR, which incurs relatively
high power consumption. Such power consumption is
acceptable for smart speakers at home or in car, but cannot
be afforded by mobile devices with limited battery life (e.g.,
smart watch). To reduce the power consumption in practice,
a low-power component (e.g., IMU, light sensor) can be
used to trigger and wake up RobuCIR in idle mode.

Motion Artifacts. In our current work, we assume the
user’s torso and the device are relatively static such that
only the movement of hand is captured by the transceiver.
In practice, the mobile phone and human torso might be in
dynamic status (i.e., walking with mobile phone in the
pocket), which results in inconsistent hand moving dis-
tance, speed and AoA. Besides hands’ location relative to
the transceiver (e.g., AoA), hand orientation when perform-
ing gestures may cause different CIR measurements as well.
Such relative motions between the user’s hand and the
mobile device could affect the performance of our system.
We plan to address these practical challenges in the future.

Model Sizes. As we apply neural networks to identify the
gesture types, there exists tradeoff between the system per-
formance and the model size of the neural network. A
deeper neural network achieves higher performance while
inevitably resulting in larger model size, and vice versa.
Our neural network is 5 layers of CNN and 1 layer of LSTM
and the current model size is 5.5M. We notice that although
model size is not a problem for high-end servers, it cannot
be ignored if applied to the resource-constrained smart
devices. A larger model size gives rise to higher RAM and
increases the processing time of identifying a single gesture,
which costs higher power consumption for smart devices.
Models with smaller sizes are more appropriate for
resource-constrained smart devices while with lower sys-
tem performance. One possible approach is to deploy the
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trained model on the cloud and only extracting CIR mea-
surement at the end devices. The CIR measurement is sent
to the cloud for gesture identification once it is measured by
the smart devices and the cloud sends back the results.

6 RELATED WORK

In recent years, contact-free gesture recognition techniques
enable human-computer interaction. They realize control of
machine by performing gestures nearby the devices without
any contact. Camera-based gesture recognition system has
been embedded in current vehicles (e.g., BMW) and smart
home systems, which allow users to control speaker volume
while chatting in the car or control smart devices at home.
However camera-based systems rely on LoS path and good
lighting conditions, which limit its practical impact factors.
Google Soli uses a specialized radar to transmit millimeter
waves to control the devices, which has been integrated into
latest smartphones (iPhone & Google Pixel). However, it
works in the 60 GHz frequency range, which is used for spe-
cial purposes and may not be allowed in some countries.
FMCW radar and USRP have been used to track human ges-
tures [14], [27]. However, they require specialized devices
and incur high deployment cost. RobuCIR exploits widely
used speaker and microphone to transmit and receive acous-
tic signals, which works under 18 KHz to 24 KHz frequency
band and does not rely on LoS path and lighting conditions.
As speakers and microphones are widely deployed in vari-
ous smart devices (e.g., smartphone, smart speaker, smart
watch), acoustic sensing has attracted wide attention in both
industry and academia [3], [7], [15], [17], [19], [21], [22], [23],
[24], [25], [30], [31], [33], [34], [40], [42], [43], [47], [49], [51],
[52], [53]. SoundWave [7] can detect gestures by tracking
hand motion (e.g., speed, direction, and amplitude) based on
the Doppler shift of the audio signals reflected from the hands.
AudioGest [30] can identify six types of gestures with high
accuracy by measuring Doppler shift. EchoTrack [3] recog-
nizes gestures based on the Time-of-Flight information. Fin-
gerlO [22] measures the change in the cross-correlation of the
consecutive received acoustic signals to track the moving
hand. However, FingerlO treats the whole hand as a single
reflection point to track the hand movement, which cannot
capture the complex finger movement of gestures. Our Robu-
CIR can effectively measure the multipath reflection from fin-
gers when performing gestures by applying CIR. LLAP [43]
enables trajectory tracking of a finger by extracting signal
phase information. Strata [49] achieves higher accuracy by
measuring CIR of the reflected audio signals. However, Strata
still regards the finger as a signal reflection point. In our work,
we apply both CIR magnitude and phase to measure the sig-
nal reflection, which provide different yet effective informa-
tion of gestures. Those works regard the finger/hand as a
single reflection point and achieve high tracking accuracy.
However, modeling the whole hand as a single point fails to
provide sufficient resolution. UltraGesture [17] measures CIR
magnitude of the reflected audio signal and recognizes hand
gestures. However, UltraGesture suffers from frequency
selective fading and needs a huge amount of training data to
effectively train neural network models. Unlike UltraGesture
that emits single frequency signal, we exploit frequency hop-
ping scheme to mitigate frequency selective fading. Besides,
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to obtain sufficient training data and increase system robust-
ness, we apply the data augmentation technique to automati-
cally generate training data. In summary, unlike these works,
we present a holistic design and implementation of robust
CIR measurement, data augmentation, and learning based
classification, which as a whole improves the overall perfor-
mance in terms of accuracy and robustness.

Radio frequency (RF) signals are used to track finger/hand
motion [1], [4], [11], [14], [26], [27], [35], [36], [41], [45]. AllSee
[14] recognizes gestures using power-harvesting sensors. Rf-
IDraw [41] and RFIPad [4] track the trajectory of finger move-
ment and enable in-air handwriting. WiGest [1] leverages
WiFi signal strength to recognize gestures near mobile devi-
ces. WiSee [27] can track different home gestures by extracting
minute Doppler shifts of WiFi signals induced by human
body. WiFinger [36] can recognize gestures by detecting
unique patterns in Channel State Information (CSI). WiDraw
[35] enables hands-free in-air drawing by processing the
Angle-of-Arrival values of incoming WiFi signals. Such works
require RF devices and support different applications from
acoustic based works.

Vision based gesture tracking are well-studied [20], [29],
[32]. Microsoft HoloLens [20] uses specialized cameras to
provide contact-free human gesture tracking. Sony PlaySta-
tion VR [32] require users to wear helmets and controllers,
which are cumbersome compared to contact-free systems.
DigitEyes [29] can model hand movement from ordinary
gray-scale images. However, vision based methods require
good light conditions, which limits their applications.

7 CONCLUSION

This paper presents a holistic design and implementation of
an acoustic based gesture recognition system that can identify
15 types of gestures with high robustness and accuracy. In
order to alleviate frequency selective fading, this paper adopts
frequency hopping and carefully designs down-conversion
and demodulation to avoid inter-subframe interference.
Based on the insights obtained in the initial experiments, this
paper conducts data augmentation on raw CIR data to synthe-
size new augmented data, which is used to effectively train
neural network models. In particular, the augmented data
captures different variations in practical scenarios such as dif-
ferent gesture speeds, distances to transceiver, and signal
attenuation. The experiment results show that RobuCIR sub-
stantially outperforms state-of-the-art work and achieves an
overall accuracy of 98.4 percent under different practical
impact factors.
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