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Abstract—Quantized neural networks (QNNs) have be-
come a standard operation for efficiently deploying deep
learning models on hardware platforms in real application
scenarios. An empirical study on German traffic sign recog-
nition benchmark (GTSRB) dataset shows that under the
three white-box adversarial attacks of fast gradient sign
method, random + fast gradient sign method and basic it-
erative method, the accuracy of the full quantization model
was only 55%, much lower than that of the full precision
model (73%). This indicates the adversarial robustness of
the full quantization model is much worse than that of the
full precision model. To improve the adversarial robustness
of the full quantization model, we have designed an adver-
sarial attack defense platform based on field-programmable
gate array (FPGA) to jointly optimize the efficiency and
robustness of QNNs. Various hardware-friendly techniques
such as adversarial training and feature squeezing were
studied and transferred to the FPGA platform based on the
designed accelerator of QNN. Experiments on the GTSRB
dataset show that the adversarial training embedded on
FPGA can increase the model’s average accuracy by 2.5%
on clean data, 15% under white-box attacks, and 4% under
black-box attacks, respectively, demonstrating our method-
ology can improve the robustness of the full quantization
model under different adversarial attacks.
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I. INTRODUCTION

IN RECENT years, deep neural networks (DNNs) have been
widely used in safe-critical environments, such as, auto-

matic driving, face recognition, monitoring systems, and so
on. As DNNs have demonstrated an impressive performance
in these scenarios, their security has attracted much attention
as well. Szegedy et al. [18] first found that DNNs with good
performance were also vulnerable to adversarial attacks. These
attacks use subtle perturbation on the input images, which may
cause the deep learning model to give incorrect results. Such
small perturbations are hard to be detected by the human eye,
but they can fool the neural network easily [7]. Images with
small perturbations used in adversarial attacks are often called
adversarial examples. Adversarial examples have been proven
to be applicable to various scenarios. For example, Morgulis
et al. [14] presented a method to generate adversarial traffic signs
that can fool a wide range of classifiers of DNNs, both open-
source and production-grade in the real world. Liu et al. [23]
developed a T-shirt that could deceive the recognition system
so that pedestrians wearing the T-shirt would not be identified.
Moreover, adversarial attacks are transferable, which means that
they can even influence other models with different structures.
Such imperceptible attacks with excellent transferability unveil
the blind spots in neural networks and raise issues on reliability
and security [29].

Meanwhile, with the advent of high-performance hardware,
DNNs with deeper levels, larger model sizes, and more com-
plex building blocks are proposed for more complex tasks.
As DNNs’ layers deepen, the parameters of models and the
multiply-accumulation operations in the calculation process in-
crease dramatically, leading to a high requirement for computa-
tion, memory, and power. This makes the deployment of DNNs
extremely challenging, especially on low-power mobile devices.
As one of the most popular model compression techniques,
weight and activation quantization have been extensively studied
to reduce the model size and the computational cost signifi-
cantly. BinaryConnect [4] as the first binary CNN algorithm
introduced the gradient shear, which can achieve better accuracy
on the CIFAR-10 dataset. After that, MobileNet [9] introduced
depthwise separable convolution to construct models with fewer
parameters and reduced latency, aligning well with the design
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specifications of mobile and embedded applications.
However, when deploying DNNs on the edge devices, billions

or trillions of operations per second are required for real-time
image classification. Although the latest graphics processing
units (GPUs) can achieve this level of performance, their exces-
sive size, price, and power/energy consumption are unsuitable
for specific applications in embedded systems. While micro-
controllers offer significant price advantages, their performance
often poses challenges for running DNNs efficiently, often re-
sulting in inefficient execution or outright inability to support
such networks. Moreover, the absence of hardware acceleration
support further exacerbates the difficulty in meeting real-time
requirements, and they also significant challenges persist in
terms of flexibility and scalability.

Therefore, future embedded DNNs need an energy-efficient
yet still powerful computing platform [22]. Field-programmable
gate arrays (FPGAs) present a promising solution, since multi-
functional integrated circuits provide hundreds of thousands of
programmable logic blocks and a configurable interconnect that
enables custom accelerator architectures to be built in hardware.
Moreover, FPGAs consume less power than GPUs. Although a
single processing unit in a GPU may cost less energy than an
FPGA, the total power that a GPU consumes may significantly
higher than an FPGA since a GPU normally involves thousands
of processing units when executing the same computation work-
load. Therefore, FPGAs have been widely used to implement the
DNN hardware accelerator in recent years [26].

In this article, we have designed an FPGA-based defense
platform for the efficiency and robustness of deploying DNNs,
which can handle a variety of adversarial attacks. In general, the
key contributions are as follows.

1) Novel Quantization-Aware Training Method: Our re-
search bridges a gap of existing shortcomings in adversar-
ial robustness for fully quantized FPGA-deployed neural
networks. We propose a new quantization-aware training
approach specifically tailored for fully quantized models
deployed on FPGA platforms, effectively enhancing the
model’s robustness against adversarial attacks.

2) Deployment of Quantitative Models on FPGA: We have
demonstrated how to effectively integrate fully quan-
tized models into FPGA hardware and have designed an
FPGA-based DNN accelerator. This not only improves
the model’s operational efficiency but also reduces energy
consumption, showing the potential of quantized models
for hardware acceleration.

3) Evaluation of Model’s Adversarial Robustness: Through
extensive experiments, we evaluate the performance of
the model under various types of adversarial attacks. The
results indicate that our approach significantly enhances
the accuracy of the model under these attacks, confirming
the effectiveness of our training strategy and hardware
design.

II. BACKGROUND AND RELATED WORKS

In this section, we will introduce the background of our work.
Adversarial attacks, such as, blurred or distorted traffic signs

in autonomous driving that occur most commonly in practice,
significantly weaken the recognition ability of models. There-
fore, researchers proposed corresponding defense methods to
improve the robustness of deep learning models by minimizing
the impact of such adversarial attacks. These approaches can be
implemented on the energy-efficient and flexible FPGA platform
to demonstrate their practicability. Therefore, the background of
our work focuses on these three aspects as follows.

A. Adversarial Examples and Attacks

Methods like the fast gradient sign method (FGSM) [7],
random + fast gradient sign method (R+FGSM) [19], and basic
iterative method (BIM) [10] have been devised to enhance model
robustness by generating adversarial examples. In recent years,
research on adversarial attacks has expanded beyond traditional
image recognition to encompass diverse application domains
such as, physical-world scenarios [20], large language mod-
els [28], and multiagent systems [12]. Adversarial attacks can
be broadly categorized into white-box attacks [7] and black-
box attacks [15]. In white-box attacks, the attackers possess
complete information about the target model, enabling them to
generate precise adversarial examples. Conversely, black-box
attacks only afford attackers access to the inputs and outputs of
the target model, without knowledge of its internal structure or
parameters. Consequently, attackers typically resort to designing
and training their own models to generate adversarial examples.

B. Defense Methods

The current defense methods either preprocess the adversarial
examples to denoise the perturbation or make the model itself
robust. For the first solution, feature squeezing [3], [24] was pro-
posed to detect adversarial images by squeezing the input image.
Since a large color bit width is often not necessary to interpret the
image (for example, people have no problem recognizing most
black-and-white images), it assumes that reducing the color bit
depth of the input image can reduce adversarial opportunity. For
the second solution, adversarial training [7], [10], [16], [19],
[21] is considered to be the most effective method to mitigate the
damage of adversarial attacks and improve the model robustness.
By adding the adversarial examples with true labels into the
training set, the trained model will correctly predict the label of
future adversarial examples. By training on benign samples aug-
mented with adversarial examples, adversarial training increases
the model’s robustness against adversarial examples.

C. FPGA-Based DNN Accelerators

Parallel computing and pipeline scheduling are the most com-
monly used hardware acceleration methods for designing DNN
accelerators based on FPGA [6], [11], [27]. Memory system
optimization is also the key to accelerator design. Du et al. [6]
optimized the energy efficiency of the FPGA accelerator by
avoiding unnecessary data movement. Chen et al. [2] proposed
a spatial data flow architecture, which reduces expensive data
movement by reusing data locally. Computational complexity
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Fig. 1. Forward and backward computation graph for quantization
aware training with STE assumption.

optimization is another effective method to improve the ac-
celeration performance. Lei et al. [11] accelerated DNN by
performing data quantization. Alessandro et al. [1] used the
sparsity of neuron activation in DNN to speed up the calculation
speed and reduce memory occupation. Lu et al. [13] improved
the performance by compressing synaptic weights in large-scale
sparse neural networks. Considering the practical application of
FPGA accelerator for image classification, specific designs on
network architecture, network parameters, and operation mode
are still needed to present hardware-friendly performance.

III. WEIGHT AND ACTIVATION QUANTIZATION

In this section, we introduce the necessity of quantization for
our traffic sign recognition algorithm designed for autonomous
driving. Autonomous vehicles entail swift and precise recogni-
tion of traffic signs, which in turn requires a robust deep learning
model. However, the limited computational resources of vehic-
ular platforms, e.g., FPGAs, hinder the real-time inference of
full-precision models. To address this issue, we perform quanti-
zation strategies on both the weights and activation parameters
of our model prior to deployment. This process significantly
reduces the model’s computational resources, making it suitable
for resource-constrained scenarios.

As illustrated in Fig. 1, a quantized network is composed of
several quantized convolution blocks, each containing a serial
of conv + BN + quantizer + ReLU1 + quantizer operators. The
design of the quantized network structure aims to optimize both
the execution efficiency and accuracy of the model on hardware
platforms. Specifically, the convolutional layer serves as the
foundation of the neural network, responsible for extracting
features from the input data; the batch normalization layer
standardizes these features, helping to improve the model’s gen-
eralization capabilities. The first quantizer converts continuous
feature values into fewer discrete levels, significantly reducing
the model’s storage and computational demands. The ReLU1
activation function introduces nonlinearity, assisting the network
in learning complex data patterns. Finally, the second quantizer
further processes the outputs post-ReLU activation to ensure
that the features retain useful information in their quantized
state. Overall, this structured design not only facilitates efficient
operation on hardware platforms with limited resources but also
maintains sensitivity and classification accuracy of the model
towards the input data. During quantization aware training, batch
normalization folding is used to simulate the reasoning behavior

closely. As the quantization operator has 0 gradient almost ev-
erywhere, we followed common practice to use the operation of
straight-through estimator (STE) for gradient computation [8].

An STE used extensively in this work is quantizek, which
quantizes a real number input ri ∈ [0, 1] to a k-bits number
output r0 ∈ [0, 1]. This STE is defined as (1) and (2).

Forward : ro =
1

2k − 1
round((2k − 1)ri). (1)

Backward :
∂c

∂ri
=

∂c

∂ro
. (2)

It is evident that the output of quantizek is a real number
represented by k-bits. Also, ro is a k-bits fixed-point integer,
so the dot product of two sequences of such real numbers can
be efficiently calculated. We use k-bits representation of the
weights with k >1 and the STE function fk

w to weights are
applied as (3) and (4).

Forward : ro = fk
w(ri) = quantizek

(
tanh(ri)

max(|tanh(ri)|)
)
.

(3)

Backward :
∂c

∂ri
=

∂ro
∂ri

∂c

∂ro
. (4)

By construction, tanh(ri)
max(|tanh(ri)|) is a number in [−1, 1], where the

maximum in max(|tanh(ri)|) is taken over all weights in that
layer. quantizek will finally quantize this number to k-bits fixed-
point ranging in [0, 1].

In addition, an STE is applied to the input activations (r) of
each weight layer. Here, the output of the previous layer has
passed through a bounded activation function (ReLU1), which
ensures r ∈ [0, 1]. In this paper, quantization of activation (r) to
k-bits is simply as (5). A sample training algorithm of the full
quantization model is given as Algorithm 1

fk
a = quantizek(r). (5)

IV. SYSTEM DESIGN AND IMPLEMENTATION

As described in Section II-B, neither adversarial training nor
feature squeezing changes the structure of DNN models. To
improve the robustness of the embedded DNN model and realize
efficient model forward inference, a DNN accelerator based on
the original structure of the full quantization model should be
designed first, and then, based on it, either an adversarial-trained
model is deployed to FPGA or the color bit depth of the image in-
putted to FPGA is reduced to enhance embedded DNN model’s
adversarial robustness.

The FPGA-based system architecture we designed aims to
optimize the execution efficiency and energy efficiency of DNNs
through a customized hardware accelerator. Building on quan-
tization, we implement strategies including data flow optimiza-
tion, parallel computing, and pipelining to achieve efficient
model computations. For instance, by optimizing data access
strategies, we reduced the need for data movement, thereby,
lowering power consumption; parallel processing significantly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 19,2024 at 07:09:10 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Algorithm 1: Training an L-layer full quantization model
with W-bit weights and A-bit activations. Weights and acti-
vations are quantized according to (1) and (2) respectively.

Require: a minibatch of inputs and targets (a0, a∗),
previous weights W, learning rate η

Ensure: update weight W t+1

{1 Computing the parameter gradients :}
{1.1 Forward propagation :}

1: for k = 1 to L do
2: W b

k ← fW
w (Wk)

3: ãk ← forward(abk−1,W
b
k )

4: ak ← ReLU1(ãk)
5: if k < L then
6: abk ← fA

a (ak)
7: end if
8: Optionally apply pooling
9: end for
{1.2 Backward propagation :} Compute gaL

= ∂C
∂gaL

knowing aL and a∗

10: for k = L to 1 do
11: Back-propagate gak

through activation function
ReLU1

12: gak−1 ← backwardinput(gak
,W b

k )
13: gW b

k
← backwardweights(gak

, abk−1)
14: Back-propagate gradients through the pooling layer

if there is one
15: end for
{2 Accumulating the parameters gradients :}

16: for k = 1 to L do
17: gWk

= gW b
k

∂W b
k

∂Wk

18: W t+1
k ← Update(Wk, gWk

, η)
19: end for =0

increased processing speed. In addition, we implemented ad-
vanced batch normalization and activation functions on the
FPGA, further enhancing computational speed and data han-
dling capabilities. These design choices were made to mini-
mize latency and energy consumption while ensuring model
accuracy, making the system more suitable for real-time and
resource-constrained application environments. We illustrate
key operations in this section.

A. System Architecture

The defense platform is based on Xilinx’s ZYNQ platform,
consisting of an ARM processor and an FPGA, to keep a lower
power consumption than GPUs. To fully utilize the advantages
of ARM and FPGA, it is necessary to specify the tasks of ARM
and FPGA before designing the hardware part of the defense
platform. The system architecture is shown in Fig. 2.

In the defense platform, FPGA achieves the forward inference
acceleration of DNN. By scheduling DDR, DMA, and the DNN
IP, the ARM processor completes data transmission, parameter
configuration, and the accelerator’s startup. The data interaction
between ARM and FPGA is implemented through the AXI

Fig. 2. System architecture of the defense platform.

Fig. 3. Heterogeneous flow architecture based on FPGA.

protocol. In addition, the ARM storing input images in sequence
in pixels, to reduce the cache space of intermediate results on
FPGA.

B. General Scheme of the Hardware Design

The advantage of FPGA lies in its flexible and efficient
parallel architecture design capacity, which is highly suitable
for processing computation-intensive tasks. For the model to be
accelerated, we run the following optimizations.

1) Algorithm design optimization: The quantization aware
training is adapted to compress the size of DNN, so the storage
space required by each parameter is reduced. All parameters
can be placed in block RAM (BRAM) within FPGA, avoiding
the time and the power consumption cost caused by frequent
parameter invocation from off-chip storage resources during the
process of DNN forward inference.

2) Hardware design optimization: An efficient pipelined
structure is constructed based on FPGA. All layers of DNN
are placed on the chip, so that all layers can perform parallel
computation in the form of a pipeline, increasing data reuse.

C. Hardware Architecture

Based on the proposed design scheme, the heterogeneous
streaming architecture using FPGA is presented in Fig. 3, which
is customized to fit a given neural network model, instead of
using a fixed architecture. Each layer of the neural network has
an independent computing engine that communicates with each
other through on-chip data streams in FPGA. Each engine starts
to compute as soon as the previous engine starts to produce
output. In addition, considering the compact size of the full
quantization model, all neural network parameters are kept
in on-chip memory. The intermediate results are also kept in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 19,2024 at 07:09:10 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: FPGA ADAPTIVE NEURAL NETWORK QUANTIZATION FOR ADVERSARIAL IMAGE ATTACK DEFENSE 5

Fig. 4. Hardware architecture of adversarial attack defense platform.

on-chip memory. This avoids most accesses to off-chip memory
and minimizes the latency (the time to finish classifying one
image) by overlapping computation and communication. It also
minimizes the initiation interval since a new image can enter the
accelerator as soon as the first compute array is finished with
the previous image; energy consumption is reduced as well. In
addition, the logical resources needed by each layer are allocated
based on the computational cost, so that the time sequence of
each layer tends to be consistent and the operating efficiency of
the accelerator is maximized.

For adversarial training, the weights of the original model
in the on-chip memory of the FPGA are replaced by that of
the adversarial-trained model, and then a new bitfile is required
but it is an acceptable cost to correctly classify the adversarial
examples on the FPGA. For feature squeezing, FPGA needs to
intercept the corresponding bit when reading the input image
data to reduce the input image’s color bit depth, and then, a new
bitfile is also required.

Considering the logic resources of FPGA in ZYNQ, a hard-
ware acceleration scheme is designed, and then, the DNN model
is deployed to FPGA, as shown in Fig. 4. In order to build
pipeline architecture, the convolution layer, the batch normal-
ization layer, the activation layer, the max-pooling layer and
the full connection layer adopted by PC are and transformed
into a new hierarchical structure, which includes sliding win-
dow unit (SWU), matrix vector multiply unit (MVMU), batch
normalization and activation combination unit (BN_ReLU), and
comparison unit (CU). Each layer has its own cache space to
store parameters. The convolution layer is divided into two parts
(SWU and MVMU). The batch normalization layer and the
activation layer are combined into a unit (BN_ReLU) to reduce
the computation cost and the on-chip cache space usage. The
max-pooling layer is also split into two parts (SWU and CU).
The full connection layer is essentially an MVMU.

D. Sliding Window Unit

Convolutions can be transformed to matrix-matrix multipli-
cations, which is the approach followed in this work. For the
convolutional layer, the weights from the convolution filters are
packed into a filter matrix, while a sliding window is moved
across input images to form an image matrix. Subsequently,
these matrices are multiplied to generate the output images. For

Algorithm 2: SWU.
Require: the number of images Num, the IFM’s height H,
the IFM’s width W, the sliding window’s size K

1: assign line_buffer[K · W] = 0
2: for loop_num = 1 to Num · H do
3: if h == H then
4: h = 0
5: line_buffer[K ·W ] = 0
6: end if
7: h+ = 1
8: for w = 1 to W do
9: read 1-line pixels from the last layer

10: use line_buffer to store pixels
11: a new-line pixels will overwrites the previous one

in line_buffer if h >3
12: end for
13: if there are k-line pixels in line_buffer then
14: output 3-line pixels from array line_buffer in the

order of the image matrix or the max-pooling
operation

15: end if
16: end for =0

the max-pooling layer, a sliding window is also needed to output
data within the window for comparison.

The convolutional layer’s SWU generates the image matrix
from incoming feature maps, and an MVMU that actually
computes the matrix-matrix product using a different column
vector from the image matrix and generates one pixel of the
output image each time. In order to better cater for the SIMD
parallelism of the MVMU and to minimize cache requirements
of intermediate result, the feature maps are interleaved such that
each pixel contains all the input feature map (IFM) channel data
for that position, as illustrated in Fig. 5(a).

The SWU requires k line-buffers to store pixels from the IFM,
where k is the height of the sliding window. Since computing
an output feature map (OFM) pixel needs all IFM pixels at
a certain sliding window location, those IFM pixels can be
processed in any order due to the commutative property of
addition operation. Note that interleaving the filter matrix is done
offline, and interleaving the input image can be done on-the-fly
in the ARM. Storing pixels in this way allows us to implement
MVMU and CU by using a single wide on-chip memory (OCM)
instead of multiple narrow OCMs, and also allows the output of
MVMU and CU to be passed directly to the next layer without
any transposition. As illustrated in Fig. 5(b), the incoming IFM
data of the convolutional layer is simply stored at the sequential
addresses in a buffer, then, the memory locations corresponding
to each sliding window are read out to produce the image matrix.
A similar operation is performed for the incoming IFM data of
the max-pooling layer’s SWU in Fig. 5(c). The Algorithm 2
shows the whole process of SWU.

The specific calculation process of SWU is as follows. Ini-
tially, a linear buffer (line buffer) is allocated for each image,
sized at the window size K multiplied by the image width W.
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Fig. 5. Sliding window unit. (a) Interleaved channels for IFM data. (b) SWU in convolutional layer. (c) SWU in max-pooling layer.

This buffer temporarily stores the pixel rows that will participate
in the computation. At the start of the algorithm, all values in the
buffer are initialized to zero. Subsequently, each row of pixels
in the image is iterated over. If the current row number reaches
the image height H, the row counter h is reset, and the buffer is
cleared to prepare for a new image. For each row in the image,
a row of pixels is read from the previous layer and stored in
the buffer. If the buffer already contains more than three rows
of pixels, the new row will overwrite the oldest row. Once the
buffer accumulates enough rows, they are output in image matrix
order for the next processing step or max-pooling. This sliding
window approach allows the FPGA to process the input image
incrementally without the need to load the entire image into
memory, significantly enhancing the speed and efficiency of
data processing. By this method, the convolution operations for
each window can be executed in parallel, greatly accelerating
the generation of feature maps.

E. Matrix Vectors Multiply Unit

Most calculations in DNN can be represented by MVMUs,
so MVMU is the computational core of the DNN accelerator.
The calculation of the fully connected layer is essentially a
multiplication of the matrix vector. That of the convolution
layer also includes the matrix vector multiplication, so MVMU
realizes the full connection layer as an independent component
and also serves as a part of the convolution layer.

The structure of MVMU is shown in Fig. 6, which consists of
an input buffer, an array of processing elements (PEs), and an
output buffer. Each PE has multiple single instruction multiple
data (SIMD) lanes. The number of PEs (M) in MVMU and SIMD
lanes (N) in each PE can be configured to control the throughput.
The weight matrix to be used is kept in OCM and distributed
between PEs, and the input images stream through the MVMU
as each one is multiplied by the matrix. Each PE receives exactly
the same control signal and input vector data, but the input vector
data in each PE needs to be multiplied and accumulated with
different lines of the weight matrix. It can be seen that a PE
corresponds to a channel of the OFM of the convolution layer,
and the PE’s SIMD lanes correspond to channels of the IFM

Fig. 6. Overview of the MVMU.

Fig. 7. MVMU PE datapath.

of the convolution layer. Once MVMU receives the pixel of the
IFM, it immediately starts to calculate output vectors in parallel.
The whole process of MVMU is shown in Algorithm 3.

The datapath of a PE in MVMU is shown in Fig. 7. First,
each channel’s data, which correlates to the pixel of IFM, and
its corresponding weight are parallelly multiplied. Then, all N
channels’ results are added together. Finally, this summation is
added to the accumulator register. The above steps are repeated
for k× k times, where k is the size of the sliding window. Then,
the results in the accumulator register will perform BN_ReLU
operation to achieve an output vector data.

F. CU

The max-pooling layer of the DNN model is transformed into
SWU and CU on FPGA. SWU outputs each pixel of the IFM in
the sliding window. The maximum pixel in the sliding window
will be found by the CU through bit stitching. Fig. 8 shows the
datapath of the CU. First, each channel’s data of an input pixel in
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Fig. 8. CU datapath.

Algorithm 3: MVMU.
Require: the number of images Num, the OFM’s height H,
OFMs’ width W, sliding window’s size K, the number of
PEs M, SIMD lanes N, the bit depth of weights W_BIT,
the bit depth of a channel data of IFMs IN_BIT

1: for loop_num = 1 to Num · H ·W · K · K do
2: read a pixel
3: for m = 1 to M do
4: for n = 1 to N do
5: result+ =

w((n+ 1) ·W_BIT − 1, n ·W_BIT ) ·
pixel((n+ 1) · IN_BIT − 1, n · IN_BIT )

6: end for
7: end for
8: output result
9: end for =0

Algorithm 4: CU.
Require: the number of the IFM’s channel IN_CH, the bit
depth of a channel data of IFMs IN_BIT, the sliding
window’s size K

1: read a pixel
2: for c = 1 to IN_CH do
3: temp =

pixel((c+ 1) · IN_BIT − 1, c · IN_BIT )
4: result((c+ 1) · IN_BIT − 1, c · IN_BIT ) =

(temp > result((c+ 1) · IN_BIT − 1, c ·
IN_BIT ))?temp :
result((c+ 1) · IN_BIT − 1, c · IN_BIT )

5: end for
6: k_cnt++
7: if k_cnt == K ·K then
8: output result
9: end if =0

the sliding window are compared with the corresponding data of
the register in parallel. Then, each channel’s bigger data forms
a new pixel by bit stitching. Finally, the pixel is assigned to the
register. The above steps are repeated for k× k times. Then, the
maximum pixel in the sliding window will be outputted to the
next layer. Algorithm 4 shows the whole process of CU.

V. EXPERIMENTS AND RESULTS

The experiments are divided into two parts. The first part of
the experiments is completed on PC to select the appropriate
quantization scheme and the best defense method. First, we

compare the accuracy of the full quantization model and the
full precision model on the clean images. Then, three white-box
attacks, FGSM, R+RGSM, and BIM, are used to compare the
robustness of the full quantization model and the full precision
model. Finally, the effects of adversarial training and the feature
squeezing on the adversarial robustness of the full quantization
model are studied. Based on the quantization scheme and the
defense method in the first part, the second part is an adversarial
attack defense platform on FPGA.

1) Hardware Platform: A GPU, RTX4000, is used to train
the full precision model and the full quantization model, and
test their adversarial robustness. Then, we design an adversarial
attack defense platform based on Xilinx’s Zynq UltraScale+ MP-
SoC ZU3EG SBVA484 to study the robustness of the embedded
neural network.

2) Dataset: The experiment utilized the German traffic sign
recognition benchmark (GTSRB) dataset [17], a standard dataset
for evaluating traffic sign recognition algorithms, comprising
diverse images of traffic signs found on German roadways.
The GTSRB dataset encompasses 51 840 landmark images
distributed across 42 categories. In addition, it encompasses
images captured under various challenging conditions such
as, lighting variations, partial occlusion, rotation, and diverse
weather conditions. During the data preprocessing stage, we
resize the image to a 160 × 160 dimension and then, perform
standard ImageNet normalization following a random horizontal
flip operation.

3) Network: Considering the memory and computing re-
sources of the FPGA platform, the neural network model’s struc-
ture used in this work includes five convolution blocks and one
full connection layer. Each convolution block is a stack of a con-
volution layer, a ReLU1 activation layer, a batch-normalization
layer, and a max-pooling layer. The model has a very regular
structure, consisting exclusively of 3× 3 convolution and 2× 2
max-pooling layers. The spatial dimensions are steadily reduced
from 160 × 160pixels to 5 × 5pixels, while the number of
channels is simultaneously increased from 3 to 400.

4) Adversarial Examples: FGSM, R+FGSM, and BIM are
used to generate the adversarial examples. Referring to their
experimental settings and for more obvious adversarial attack
variance, we selected three of the adversarial attack perturbation
values, ε = 0.01, 0.02, and 0.03, respectively. Besides, for the
R+FGSM attack, we set ε1 = ε/2. For the BIM attack, we set
α = 1/255 and the number of iterations to �min(ε+ 4, 1.25ε)�.

A. Choice of Quantization Schemes

1) Accuracy Comparison Between Full Quantization Model
and Full Precision Model: The quantization of the model is
divided into weightquantization and activationquantization.
The weights of the DNN model were fixed to 4-b [5] to sim-
plify the experiment and the full quantization model ran under
different activation quantization schemes.

As shown in Fig. 9, we changed the activation bits of full
quantization models. When the bit depth of model activation is
set to 1, the accuracy of the full quantization model is approxi-
mately 7% lower than that of the full precision model. Moreover,
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Fig. 9. Accuracy comparison on clean images between different full
quantization models and the full precision model.

when the bit depth of the activation is increased beyond 1, the
accuracy of the full quantization model on clean images only
decreases by less than 2% compared to the full precision model.
Specifically, a maximum accuracy of 96.56% is achieved when
the weight’s bit depth is set to 4 and the activation’s bit depth
is set to 5, respectively. This accuracy is only 1.12% lower than
that of the full precision model, which has a bit depth of 32 for
both the weight and activation. These results demonstrate that
our methodology can significantly reduce computational and
storage requirements while maintaining a high level of accuracy,
with a marginal reduction of less than 2%.

2) Adversarial Robustness Comparison Between Full Quan-
tization Model and Full Precision Model: FGSM, R+FGSM, and
BIM were used to generate adversarial examples based on
the GTSRB test set to test the differences in the adversarial
robustness of the full quantization model and the full precision
model under white-box attacks with different intensities.

As ε rises from 0.01 to 0.03. For the FGSM attack shown in
Fig. 10(a), accuracy decreases are notable across the board: the
full precision model falls from approximately 72% to 45%, the
full quantization model with 1-b activation drops from around
82% to 62%, and the 8-b activation model from nearly 48% to
36%. In the case of the R+FGSM attack, depicted in Fig. 10(b),
the full precision model’s accuracy decreases from 90% to 73%,
the 1-b activation model from 85% to 67%, and the 8-b activation
model from 74% to 41%. Lastly, Fig. 10(c) demonstrates the
effects of the BIM attack, where the full precision model’s accu-
racy sharply reduces from about 82% to 42%, the 1-b activation
model from nearly 83% to 64%, and the 8-b activation model
plummets from roughly 58% to 22%. These results highlight
the varying levels of vulnerability of each model configuration
under different attack intensities.

As shown in Fig. 10, for all three types of adversarial ex-
amples, the robustness of both the full quantization model and
the full precision model decreases as attack intensity increases,
demonstrating a negative correlation. The white-box BIM at-
tacks with ε = 0.03 have the most significant impact on model
accuracy. As the activation bit depth increases, the robustness
of the full quantization model decreases. This is because, at
lower bit depths, the model’s representation is coarser and less
sensitive to subtle perturbations, providing a certain level of
robustness. When the activation bit depth is 1 b, the full quanti-
zation model exhibits greater robustness to white-box BIM and
white-box FGSM attacks compared to the full precision model.

TABLE I
ADVERSARIAL TRAINING EXPERIMENTS TESTED WITH ε = 0.01/0.02/0.03

ON PC

This increased robustness is due to the input compression into a
finite range, which diminishes the effect of subtle perturbations.
However, under white-box R+FGSM attacks, the accuracy of
the full quantization model is consistently lower than that of the
full precision model, as it cannot fully exploit the advantages of
the randomly initialized defense strategy.

3) Transferability of Adversarial Examples: Results of trans-
ferability for GTSRB are presented in Fig. 11 when the source
network (i.e., the models where adversarial examples generated)
is a full precision model or full quantization models with differ-
ent quantization. The adversarial examples are transferred to full
quantization models (target models) with different bit depths of
activation.

We found that transferability results are quite poor for the
FGSM, R+FGSM, and BIM attacks (values correspond to ad-
versarial accuracy). The transferability of BIM adversarial ex-
amples is similar to that of R+FGSM adversarial examples. For
the FGSM attack, relatively strong adversarial examples are built
on the source models and are more likely to transfer. Compared
with other full quantization models, the accuracy of the model
with 1-b activation is less than 70% on the FGSM adversarial
examples generated by source models, and less than 80% on
the R+FGSM adversarial examples and the BIM adversarial
examples. It indicates the transferability of adversarial exam-
ples is higher in the fully quantized model with 1-b activation,
indicating lower security.

In summary, although 5-b activation showed the strongest
ability in clean data (Fig. 9), it performed poorly when facing
adversarial samples (Fig. 10). In the experiment of adversarial
samples, although the full quantization model with 1-b activation
showed relatively high robustness under three attacks, its accu-
racy on clean data was only 89.58%. Finally, combined with
the transferability analysis (Fig. 11) and the trade-off between
model accuracy and robustness, we chose the full quantization
model with 2-b activation for the following experiments.

B. Choice of Defense Methods

1) Effect of Adversarial Training on the Adversarial Robust-
ness: We utilize the GTSRB as the initial clean sample and use
FGSM, R+FGSM, and BIM to generate different adversarial
examples, then, add them to the training set to retrain the full
quantization model. Finally, we separately trained a substituted
VGG-16 model on the same dataset to generate black-box ad-
versarial examples for black-box attack experiments.

Table I presents the results of the adversarial training methods.
Adversarial R+FGSM training and adversarial BIM training
reduces the accuracy of the full-quantification model by 0.4%
and 3.1% on the clean data, respectively, but adversarial FGSM
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Fig. 10. Accuracy of the full precision model and the full quantization model on adversarial examples. wiaj designates a model with an i-bit weight
quantization and a j-bit activation quantization. ε denotes attack intensity. (a) FGSM. (b) R+FGSM. (c) BIM.

Fig. 11. Adversarial transferability results for the CIFAR10 data set. Columns are relative to source networks and rows to target networks. Values
correspond to adversarial accuracy. The lower the value, the more transferability occurs. (a) FGSM. (b) R+FGSM. (c) BIM.

training increases the accuracy of the model by 1.1% on the
clean data. All three adversarial training methods can improve
the adversarial robustness of the full quantization model against
the attacks in the experiment. For different white-box attacks
and black-box attacks, under different attack intensities, the
method based on FGSM adversarial training has an average
improvement of 12.33% on white-box FGSM adversarial exam-
ples, 13.00% on white-box FGSM adversarial examples, 25.00%
on white-box BIM adversarial examples, 4.33% on black-box
FGSM adversarial examples, 3% on black-box R+FGSM ad-
versarial examples, and 4.67% on black-box BIM adversarial
examples. Overall, the best way to defend against white-box
and black-box adversarial attacks is adversarial FGSM training.

2) Effect of Feature Squeezing on the Adversarial Robust-
ness: We implemented the bit depth reduction operation in
Python with the NumPy library. The input and output were
in the same numerical scale [0, 1] so that we did not need to
change anything of the target models. For reducing to i-bit depth
(1 ≤ i ≤ 7), we first multiplied the input value with 2i−1 (minus
1 due to the zero value) then, round to integers. Next we scaled
the integers back to [0, 1], divided by 2i−1. The information
capacity of the representation was reduced from 8-b to i-bit with
the integer-rounding operation. The images’ color bit depth was
reduced by 3-b, 4-b, and 5-b, respectively. Then, the accuracy
of the full quantization model on the adversarial examples was
tested.

The experimental results are shown in Table II. For clean
images, as the color bit depth increases from 3 to 5 b, the accuracy
of the full quantization model decreases less significantly: 13.2%
for 3-b, 3.7% for 4-b, and 0.7% for 5-b. Under adversarial

TABLE II
FEATURE SQUEEZING EXPERIMENTS TESTED WITH ε = 0.01/0.02/0.03

ON PC

attacks, feature squeezing enhances accuracy against white-box
attacks, with the most substantial gains at 3-b (up to 32%
improvement) but decreases accuracy against black-box attacks.
Considering a 4-b depth shows a consistent improvement in
model performance under various adversarial conditions without
as drastic a drop in clean data accuracy as the 3-b depth, it may
offer a better balance. The 4-b depth also provides sufficient
robustness while maintaining higher operational flexibility and
generalization, making it a preferable choice for both defense
effectiveness and higher clean data accuracy.

C. Robustness of Embedded DNN

In order to analyze the adversarial robustness of the FPGA-
based defense platform, 50 images were randomly selected from
each type of image in the test set of GTSRB, and there were a
total of 2100 images for 42 types in the test set of GTSRB to be
tested.

Based on the designed DNN accelerator, we first deployed
the full quantization model with 4-b weights and 2-b activation
to FPGA to compare the adversarial robustness of the model
PC and that of the model on FPGA. Then, the first SWU
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TABLE III
COMPARISON OF ADVERSARIAL ROBUSTNESS OF THE FULL QUANTIZATION

MODEL BETWEEN FPGA AND PC

TABLE IV
FPGA EXPERIMENTS TESTED WITH ε = 0.01/0.02/0.03

TABLE V
PERFORMANCE COMPARISON OF FULLY QUANTIZATION MODELS ON PC AND

FPGA WITH EXTERNAL METHOD

of the accelerator was set to read the low 4-b data of each
channel of the input image to analyze the impact of the feature
squeezing on the robustness of the model. Finally, the weights
in the on-chip memory of FPGA were replaced with the weights
of the adversarial-trained model to analyze the impact of the
adversarial training on the robustness of the model. The results
are shown in Tables III and IV, respectively. First, the accuracy
of the full quantization model on clean data on FPGA is 0.9%
smaller than that on PC. The adversarial examples also affect
the accuracy of the platform. Then, although the image color
bit depth reduction on FPGA improves the robustness of the
platform against the three white-box attacks, it reduces the
accuracy of the platform on clean data and the robustness against
the three black-box attacks. Finally, adversarial FGSM training
improves the accuracy on clean data from 90.0% to 92.5%; it also
improves the robustness of the platform against all six attacks.

D. Comparison With External Studies

We compare our work with the studies proposed in refer-
ence [25], as their research is highly relevant and offers a bench-
mark for comparison. Reference [25] introduced a patch-based
adversarial training method and applies this technique to train
three different models, which demonstrate robust performance
on the GTSRB open dataset. For our experiments, we utilized
the same test dataset which comprises 2100 images for 42 types
extracted from the GTSRB datasets. To compare with refer-
ence [25], we separately train two models using our proposed
method and the method in reference [25] on the same GTSRB
dataset. Then, we implement the two well-trained models on
both the same PC and the same FPGA platform, respectively. We
guarantee that the trained models on both platforms achieve their
best performance. The results of this comparison are presented
in Table V.

In Table V, although the model trained with the external
method slightly outperforms that trained with our method on the

PC platform, the performance when deployed on the FPGA plat-
form drops by 3%. In contrast, the performance of our method
improves by 1.6% when deployed on the FPGA platform. This is
because our training method is specifically designed for FPGA
platforms and the comparison result demonstrates its effective-
ness.

E. Performance of Embedded Computing

1) Image Processing and Throughput: We compared the
throughput of the designed defense platform with that of Intel’s
CPU (i9-10850K) and Nvidia’s GPU (RTX4000). The run-time
for 2100 images is measured from the moment when the FPGA
accelerator is started, to the moment when the calculation of
the last layer for the last image is finished. The number of
images processed per second by different hardware platforms
are presented in Fig. 12(a). The full quantization model running
on different platforms has the same network topology and weight
parameters. FPGA processes 152 more images per second than
CPU and 75 less than GPU. The full quantization model with 4-b
weights and 2-b activation requires 192.14 million operations
(MOPS) to classify one image. According to the experimental
results in Fig. 12(a), we can get the throughput of CPU, GPU,
and FPGA as shown in Fig. 12(b). The throughput of FPGA
reaches 55.37, about 3.15 times that of CPU and 0.79 times that
of GPU.

2) Power Consumption and Energy Efficiency: In Fig. 12(c),
we can see that the power consumption of CPU and GPU exceeds
95 W and 35 W, respectively, while that of FPGA is only about
2.8 W. In terms of energy efficiency, the FPGA-based defense
platform still provides a significant advantage, as shown in
Fig. 12(d). The energy efficiency of FPGA is 20.03 GOP/(s ·
W), which is much higher than that of the GPU [1.83 GOP/(s·
W)]. Based on the above experimental results, although GPU has
higher throughput than FPGA, its power consumption and power
efficiency are inferior. Therefore, FPGAs are more suitable for
real-time edge applications.

3) Resource Utilization: Fig. 12(e) shows the resource uti-
lization of the designed defense platform employed on the Zynq
UltraScale+ MPSoC ZU3EG FPGA, which includes 71.6 k
LUTs, 216 BRAMs (36 KB), and 360 digital signal processor
(DSP) slices. It can be seen that the utilization rate of LUT,
BRAM, and DSP of FPGA reached 45%, 34%, and 100%, re-
spectively. Despite the high resource utilization and the resulting
long paths in the interconnect, the defense platform can still be
synthesized for an adequate clock frequency of fmax = 200 MHz.
This is possible because the architecture fully distributes the
computation as well as all the required data onto the different
computational units. The independent computational units have
no dependencies, allowing for mostly local routing and minimal
global interconnections, which can be efficiently pipelined.

VI. DISCUSSION

1) Impact and Implication: Our well-designed defense plat-
form can be implemented in most practical scenarios, which
however, may still face practical issues when being deployed in
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Fig. 12. Comparison of different accelerators on CPU, GPU, and FPGA. (a) Images processing. (b) Throughput. (c) Power consumption.
(d) Energy efficiency. (e) Resource utilization.

extreme conditions. i) Bottlenecks in resource and hardware: FP-
GAs may face performance bottlenecks with complex models,
which require further minimizing memory and computational
overhead while maintaining algorithm performance. ii) Latency
and real-time processing: Low latency and stringent real-time
requirements under extreme conditions are difficult for existing
hardware. iii) Power consumption: Power consumption needs
to be further reduced for battery-powered devices, demanding
extremely high energy efficiency. Future work may focus on
addressing these challenges, ensuring broader practicability and
efficiency, and making the platform viable for harsh conditions.

2) Tradeoff and Applications: We find that while quantized
models untrained against adversarial attacks perform well on
clean datasets, they are at the cost of robustness when subjected
to attacked datasets. Therefore, the design and deployment of
practical models should be in the context of specific application
scenarios, incorporating appropriate adversarial training strate-
gies and quantization schemes to achieve an optimal balance
between accuracy and robustness.

3) Applications of FPGA-based defence platform: Defense
platforms based on FPGAs are pioneers in delay control and real-
time performance, which are well-suited for applications de-
manding high real-time and system security, such as autonomous
driving, and aerospace control systems. These scenarios require
not only a rapid response to changes in the external environment
but also the capability to withstand potential malicious attacks
to ensure continuous and stable system operation. Therefore, the
characteristics of the FPGA platform make it an ideal choice for
implementing efficient and secure computing in these fields.

VII. CONCLUSION

This work focused on the security of the quantized neural
networks, which were widely deployed in CPU/GPU/FPGA.
It also paved a possible direction to bridge the following two
critical areas in deep learning: 1) efficiency and 2) robustness.
Although the full quantization model had poor adversarial ro-
bustness, adversarial training improved the model’s average
accuracy from 90.0% to 92.5% on clean data, from 66% to 81%
under white-box attacks, and from 84% to 88% under black-box
attacks, without increasing any computing and storage cost of
FPGA. In the meantime, the designed defense platform could
accelerate DNN’s forward inference and fully use the logic
resources of FPGA with a high power efficiency. In the future, we
will explore methods that can further improve the performance

of adversarial training at the edge, such as, adding random noises
during training.
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