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With the rapid proliferation of wireless sensor networks, different network topologies are likely to exist in the same geographical
region, each of which is able to perform its own functions individually. However, these networks are prone to cause interference to
neighbor networks, such as data duplication or interception. How to detect, determine, and locate the unknown wireless topologies
in a given geographical area has become a significant issue in the wireless industry. This problem is especially acute in military
use, such as spy-nodes detection and communication orientation systems. In this paper, three different clustering methods are
applied to classify the RSSI and LQI data recorded from the unknown wireless topology into a certain number of groups in order
to determine the number of active sensor nodes in the unknown wireless topology. The results show that RSSI and LQI data are
capable of determining the number of active communication nodes in wireless topologies.

1. Introduction

Security maintenance has been a well-studied problem in
wireless sensor networks. A wireless sensor network (WSN)
is a collaborative network that contains a collection of sensor
nodes, each of which has a power source, and is able to
individually and autonomously complete the function of dis-
covering and maintaining routing to other sensors through
wireless links. Due to these properties, data are collected, pro-
cessed, and transmitted automatically without any personnel.
However, it might give rise to potential security perils during
data transmission; for example, “spy” nodes can duplicate the
transmitted data and relay it to other wireless topologies with-
out being discovered. In addition, commercial applications
apply to such a problem as multiple communication networks
can operate in the same frequency ranges, which give rise to
interference, errors, and competition.

These security issues often happen when many different
wireless topologies locate within the same geographical area.
This paper focuses on how to determine the number of
“spy” nodes in an unknown network topology. Consider the
scenario illustrated in Figure 1. In Figure 1, two networks have
been deployed in the same geographical location and have

overlapping coverage areas. Hence, they may interfere with
one another and cause security issues when operating under
the same frequency range, use a common communication
protocol, or are directly competing for bandwidth.

However, in real-world deployment of such networks, the
information regarding the overall topology of the network
is unknown. To illustrate this we use a coalition network
example. That is, as illustrated in Figure 1 the US sensors are
unaware that there are British sensors nearby and do not
know the number of sensors that have been deployed to the
region. The same example can be applied to the commercial
sector of two communication companies with coverage over
a given city or region. In this paper, we seek to determine
the number of nodes as a preliminary study to further
determine the topology of the unknown networks without
acquiring authentication or encryption. We focus on the use
of pattern recognition, clustering, and other classification
and identification tools to seek a solution. Firstly, we apply
the pattern recognition methodologies commonly used in
mathematical morphology (MM) [1-3] known as granulo-
metric size distribution (GSD); secondly, we apply a “bottom
up” clustering method known as agglomerative hierarchical
clustering (AHC) to build a hierarchy of clusters. Finally,
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FIGURE 1: Illustration of two networks that have been deployed to
the same geographical location and overlap in coverage.

partitioning around medoids (PAM) algorithm otherwise
known as K-Medoids clustering technique is used. The
primary goal of this paper is to apply these three methods
to process the received signal strength indicator (RSSI) and
link quality indicator (LQI) data collected from the unknown
wireless topology as means to try isolating patterns and
determine the number of nodes actively communicating in
a network. To the best of our knowledge, it is the first time
that clustering techniques are applied to classify RSSI and LQI
data for nodes’ number information in the research fields.

2. Related Work and Background

RSSI and LQI data is utilized in this paper as two major
parameters in wireless sensor networks to apply clustering
techniques. These two indicators do not require a priori infor-
mation regarding the communication protocol and security
encryption. These indicators can be observed as the signals
are passively collected by a receiver. Hence, if there are
inherent patterns associated with the network topology, itis a
clear indicator that allows a method to gain insight regarding
the unknown network topology.

2.1. RSSI. Received signal strength indicator (RSSI) as the
name suggests is a measure of the strength of a received
wireless signal. It is obvious that the power of the received
signal would decrease with distance. To be precise, power Py
of the received signal is inversely proportional to the square
of the distance between the receiver and the transmitter [4].
RSSI can then be defined as the ratio of received power Py
to the reference power Py . Reference power Py, is typically
taken as 1 mW [5]. In [5], RSSI is defined as

P
RSSI = 10 - log =X, )
Ref
where Pyy is defined as
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where Pry is the transmission power of sender, Pyy is the
remaining power of the wave at the receiver, G;x and Ggx
are the gain of transmitter and receiver, respectively, 9 is the
wave length, and lastly d is the distance between the sender
and the receiver.

The distance between antennas will directly influence the
RSSI value [6, 7]. Hence, RSSI is often used as a tool of
localization in wireless sensor networks; please refer to [5, 8-
10] as examples of RSSI used in localization of receivers.
Localization through RSSI is possible due to the signal
attenuation according to the inverse squared rule.

Because of its relationship with distance, ideally RSSI
would be a very accurate measure of the receiver’s distance
from the source. It, however, can get affected from a number
of factors such as reflections from objects, electromagnetic
fields, diffraction, refraction, and other multipath effects
[5]. Due to these effects, only a region of possible location
of a sender can be attained. The precision varies and can
be improved through proper signal processing techniques
and/or characterization of the operating environment.

2.2. LQI The link quality indicator (LQI) has been used
as a substitute to RSSI. LQI represents the quality of the
received packet and is not affected as much as the RSSI, by
the environment. The LQI represents the number of required
retransmissions to receive one radio packet correctly [5].
Basing LQI on the chip error rate and not the strength of
the received signal makes LQI perform better than RSSI,
since it is not affected drastically by reflections from objects,
electromagnetic fields, diffraction, refraction, and so forth.
We can see the difference between RSSI data and LQI in
Figure 2.

2.3. Using RSSI and LQI in WSN. As per the definition of RSSI
and LQI mentioned above, these two parameters are mostly
used for nodes’ localization and distance measurement [11-
13].

In [14], several measurement-based models including
RSSIL, time of arrival (TOA), and angle of arrival were
described to provide people with statistic models when
localizing nodes in cooperative WSNs. Also, Haeberlen et al.
[15] designed a system based on probabilistic techniques to
localize sensor nodes in an office building by walking around
with a laptop recording the observed signal intensities of this
building’s unmodified base stations. However, to the best of
our knowledge, none of these researches have focused on
determining the number of nodes by processing RSSI and
LQI in WSN.

Instead, we use these two types of parameters to deter-
mine if each sensor’s information can result in an estimate
of its surroundings. In this paper, we seek simple yet
effective means to determine the number of participants in
the unknown network. Localization methods require more
sophisticated methods. We look at the received signals from
the unknown topology and use quantitative classification to
derive how many nearby nodes could be transmitting at any
given point in time, since each sensor is collecting inde-
pendent information. The estimates should give us insight



International Journal of Distributed Sensor Networks

4 nodes communicating for 75 bytes on sniffer52
-1 w AL

70

60l
50

40

1500 2000 2500 3000

1000

0 500
(a) LQI data

3500

4 nodes communicating for 75 bytes on sniffer52

Huulun lIMWU

=52

-54

=58

0 500 1000 1500 2000 2500 3000

(b) RSSI data

FIGURE 2: RSSI and LQI data received by the same node.

regarding the number of possible nodes in the unknown
topology. Furthermore, since the signal strength is a function
of distance, we can determine possible location regions. This
results in a geographical estimate of the position of a possible
unknown network participant.

This paper is organized as follows. Firstly, we explain
the methodology of using GSD functions, AHC, and PAM
clustering algorithms, respectively, as means to identify the
RSSI and LQI patterns. Secondly, we describe experimental
details carried out on a small Zigbee network. Finally, result
analysis and conclusion are provided.

3. Methodologies

In this paper, a shape driven clustering technique gran-
ulometric size distribution (GSD), a statistical distance
clustering approach agglomerative hierarchical clustering
(AHC), and a traditional clustering method partition around
medoids (PAM) are separately explored to analyze if insight
regarding the number of wireless nodes in a nearby network
can be determined through collected RSSI and LQI data from
sniffer nodes. We employ the GSD, AHC, and PAM methods
to separate the patterns of RSSI and LQI from sensor nodes.
Accordingly, we developed a real experiment explained in
the proceeding section and apply the corresponding tools to
generate the results analysis.

3.1. Granulometric Size Distribution. Given the signals of
RSSI and LQI, we develop the analysis by employing the
granulometric size distribution (GSD) using MM tools. These
tools have been fully illustrated through example in [16].
Specifically, we use the GSD method to reduce the dimension
of the signal.

The GSD function is generated by continuously using
the increasing multiples of structuring elements to probe
(remove) the morphological granulometries in the subgraph
until all the subgraph area has been diminished. The subgraph

area SG(f) is the area between the curve f(x) and X-axis;
structuring elements are kinds of predefined regular shapes,
such as a triangle or a rectangle. The MM mentioned in [16]
is for the better understanding of the following innovative
method called GSD method, because the procedures of
generating a GSD function are very similar to the opening
operations of the MM theory.

In this paper, a unit square with side length equal to 1
is regarded as the structuring element. The GSD of a signal
waveform is denoted as

Y («)

GSD, (S(1) = —
0

) (3)

where S is the total subgraph area of the signal waveform.
W(«) is the total opening part of the subgraph of that signal
waveform, which is defined as

V(@) = )y, (4)
i=1

where p(i) is the opening of a signal waveform S(t) by
structuring element «B:

WOR (5)

where « is a positive integer, which will increase by 1 at each
time when opening the signal waveform. B is the structuring
element and y(«) is called the trimming area by using & times
of B to cut the remaining area of the original waveform. t is
the sampling time. According to formula (3), it is clear to see
that the pattern spectrum of GSD is a probability distribution
according to the definition.

GSD clustering method has been proposed and utilized
in several modern researches. In [17], Ayala et al. introduced
the concept of granulometric size distribution in detail. In
[18], GSD clustering method is adopted to classify the solar
radiation patterns of the year. In [16], a new nonparametric
method is applied to differentiate signals from noise based on
GSD method.

y(a) =
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FIGURE 3: Illustrative example of GSD function.

We employ the definitions in [16-18] to generate GSD
functions of motifs of the RSSI and LQI signals gathered from
an unknown network topology. In Figure 3, an example of
GSD function is illustrated. In Figure 3(a), we have a given
signal. Then, through the application of the aforementioned
definitions, we first generate a stepwise function of the
signal with an appropriate base length «, which is illustrated
in Figure 3(b). From this stepwise function, we attain a
representative GSD function, as shown in Figure 3(c). In this
paper, we employ the GSD method to separate the patterns of
RSSI and LQI from sensor nodes.

3.2. Agglomerative Hierarchical Clustering. In this paper,
AHC method is utilized to explore if any hierarchical rela-
tionship inherently exists inside the RSSI and LQI data,
hence allowing derivation of nodes’ number. The Hierarchical
clustering technique is now a widely used data analysis tool in
many applications, such as data mining, statistics, machine
learning, spatial database, biology, and marketing strategy

[19-21]. In literature [22], Mirkin described the basic concept
of AHC clustering method in detail.

We explore AHC to the RSSI and LQI to generate a
binary tree (also named “Dendrogram” [22]) derived from
the architecture of the data, hoping to directly observe the
number of clusters by counting the number of branches of
this tree.

Each binary tree has the following characteristics:

(1) root node: the whole data set;

(2) height of the tree: distance between each pair of data
points or clusters;

(3) intermediate nodes: the level to which the objects are
closed to each other;

(4) leaf nodes: corresponding data points;

(5) clustering criteri: cutting the dendrogram at different
levels.
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Agglomerative hierarchical clustering analysis for wireless data
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FIGURE 4: A simple example of a binary tree with 30 data points.

The basic thought procedure of the hierarchical clustering
method can be briefly described by the following steps.

Step 1. Classify each data point into its own singleton cluster.

Step 2. Each pair of two data points are combined into a single
cluster based on closest shortest distance. The distance mainly
uses Euclidean distance.

Step 3. Continuously merge two clusters into one cluster
based on closest shortest distance.

Step 4. Repeat Step 3 until there is only one cluster containing
all the points.

Figure 4 shows a binary tree of data. In the binary tree, it is
easy to observe that each level of the result is a segmentation
of the data and all the data points are successively classified
into groups.

In agglomerative clustering, every data point is regarded
as its own cluster and pairs of clusters are merged into a
bigger cluster until all data points are in one cluster. We use
Euclidean distance to calculate the dissimilarities between
each RSSI and LQI data pair that are recorded on the same
sampling point. Each RSSI and LQI data forms a 2-dimension
coordinate: the X-axis is RSSI data and the Y-axis is LQI data.
AHC can produce an ordering of object, displaying the data
informatively to the researchers. Also, the clusters generated
by AHC are relatively smaller [22], which may be helpful for
discovery.

3.3. Partitioning Around Medoids. Finally, we apply a tradi-
tional clustering algorithm known as PAM to classify the RSSI
and LQI data into groups based on the Euclidean distance
in order to derive the number of active nodes. PAM is fully
described in chapter 2 of Kaufman and Rousseeuw [23].
The purpose of PAM is to find a sequence of targets called
medoids, which are centrally placed in clusters. A medoid

can be defined as a data point inside a cluster whose average
distance (generally using Euclidean distance) to all other data
points in the same cluster is minimized [23]. Assume the
total number of objects is N and PAM first computes K
selected medoids and the number of unselected objects is
Q = N — K. The primary goal of the PAM clustering method
is to make sure that the average distance of objects to their
closest medoid is minimal. PAM has 2 main steps, build and
swap [23].

Build. Select a collection of k objects as medoids for an initial
set M.

Swap. If the distance or dissimilarity between unselected
objects and medoids can be reduced by exchanging a medoid
with an unselected object, then the swap step is carried out.
The swap step continues until the distance between medoids
and unselected objects cannot be reduced any further.

Figure 5 shows a simple example of PAM clustering
method, through which the data are classified into 4 groups.

Through PAM, we hope to find the various structural
features of object, such as the number of medoids (number of
groups) which represents the number of clusters and hence
the number of active nodes.

Euclidean distance is also used in PAM. Similar to the
data format employed in AHC, data pairs are also used as
coordinate points, each of which includes one RSSI and one
LQI data.

4. Experimental Details

The experiments were conducted using the TinyOS network
operating system on TelosB sensor motes. TelosB motes
have an 8 MHz TT MSP430 Microprocessor with 10 KB of
RAM. The motes have a Chipcon CC2420 radio for wireless
communication which is IEEE802.15.4/Zigbee compliant.
The CC2420 radio has programmable power levels. The
experiments were run at the default power level of 0 dB and
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FIGURE 5: A simple example of PAM clustering result.

the radio channel was set at 2475 MHz. Experiments were
performed indoors. The communication range of the CC2420
radio is approximately 20m to 30 m indoors and 75m to
100 m outdoors. In the CC2420, the RSSI value is measured
over the first 8 symbols after the start frame delimiter (SFD)
of the received physical layer header.

The experimental setup consisted of one node attached to
the laptop acting as a base station and three nodes working as
sniffers. The sniffer nodes collected the RSSI and LQI values
of each packet they overheard from the field nodes and sent
this data to the base station. Thus, for each packet transmitted
by a field node, the base station had a set of three RSSI
and LQI readings from the three sniffers. The experiments
were conducted, first, with two field nodes communicating,
then with three, and then with four. Each experiment was
repeated for three different sizes of the network packet: 10
bytes, 75 bytes, and 115 bytes. In the indoor experiment,
distances between the nodes were considerably small. It was
assured that no moving objects interfered with the signals. In
our experiment, 4 nodes and 3 sniffers are randomly placed.
The topology of the nodes in the experiment can be seen in
Figure 6.

The initial experiment consisted of three sniffers and two
field nodes placed in the lab as shown in Figure 6. The two
field nodes were routing messages back and forth. Sniffer
nodes listened to each radio transmission and collected the
RSSI and LQI values of each received packet. The data from
all the three sniffer nodes was accumulated at the base station.
This experiment was performed for three difference packet
sizes, which were 10 bytes, 75 bytes, and 115 bytes. An
additional experiment was performed where a third field
node was included, with the nodes now communicating in
a ring. This configuration was again run for 10 bytes, 75
bytes, and 115 bytes packet sizes and RSSI and LQI data was
collected by the sniffers. The last experiment consisted of a
fourth additional node and similarly data was collected for
this configuration with the three different packet sizes.
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5. Result Analysis

5.1. GSD Results. The RSSI and LQI data was converted
through the employment of the GSD method. According to
the different definition between RSSI and LQI, the corre-
sponding GSD curves are obviously different. Figure 7(a) and
Figure 7(b) show the GSD curve of the RSSI and LQI data
randomly picked from each sniffer when all 4 nodes are active
and communicating with each other.

In Figure 7(a), it is easy to observe that almost all GSD
functions of RSSI keep the same low levels, which is flat and
close to the X-axis. However, it is very difficult to differentiate
them when they are combined together into a single drawing.
This is due to the RSSI data being inherently stable according
to its mathematical definition and fluctuates narrowly during
the entire transmission, while GSD method is a shape driven
clustering method and is mostly determined by the shape of
the original data.

However, in Figure 7(b), the GSD functions of LQI data
perform much better than RSSI. Figure 7(b) shows that
the GSD functions have more levels and the shape of the
GSD functions is dissimilar, which increases the possibility
to differentiate them when they are combined together.
However, another problem comes when they are combined.
Figure 7(c) shows the GSD functions of LQI when combining
them together to differentiate them. The blue curves stand for
2 active nodes, the red curves stand for 3 active nodes, and the
black curves stand for 4 active nodes, respectively.

The circumstances of different number of active nodes
are separated clearly in Figure 7(c). However, they are not
consistent for each circumstance and every instance. In most
of cases, the 3 curves twist about each other, especially at
the beginning of the curves. In other words, it is very hard
to draw a linear boundary (a criterion) between each pair
of adjacent curves which can clearly divide them. Similarly,
the curves also twist each other when using 10 and 115 bytes
transmitting packets size. The results of GSD function of
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FIGURE 7: GSD results of RSSI and LQI.

LQI are inconsistent, which make it very hard and unclear
to determine the number of active nodes. Hence, from the
analysis mentioned above, the GSD clustering method is
incapable of providing sufficient information of the number
of active nodes when classifying RSSI and LQI data.

5.2. AHC Results. Figure 8 shows the dendrogram of agglom-
erative clustering method when RSSI and LQI data were
collected under different circumstances.

From Figure 8, several observations can be made.

(1) Because there are thousands of RSSI and LQI data
pairs and each leaf node stands for a data pair, all leaf
nodes bunch up together so that it is impossible to
know which data pair is classified into which cluster.
At the bottom of each figure, where it would be
desirable to clearly show the data points, the data
points are now bunching up together and become
several bold lines.

(2) The numbers of clusters are determined by cutting the
trees at appropriate levels. However, from Figure 8,
it is difficult to come up with a method or criteria
to determine where the dendrogram should be cut.
Hence, it is unclear how to find an appropriate height
level where the trees can be cut to obtain the number
of clusters.

(3) The intermediate nodes in hierarchical binary tree
provide no information about how many clusters
there are after classification.

Due to the reasons presented above, it is concluded that
RSSI and LQI data are incapable of providing sufficient
information about the number of active nodes in an unknown
wireless topology when applying the agglomerative clustering
technique. Agglomerative clustering method is incapable of
classifying the data. Hence, it is unable to provide enough
information with regard to how many nodes are communi-
cating in an unknown wireless topology.

5.3. PAM Results. PAM clustering results will be shown
in clustering plots. A clustering plot is a two-dimensional
coordinate axis. Each data pair (RSSI, LQI) is mapped to the
coordinate axes. The X-axis represents RSSI and the Y-axis
represents LQI. Figure 9 shows some PAM clustering results.
The results from different circumstances are described as
(number of active nodes)_(transmitting packets size)_(sniffer
that data received). For example, 2_10_50 means the RSSI and
LQI received by sniffer 50 when two nodes are communicat-
ing simultaneously using 10-byte packet size.

In Figure 9, it is observed that the number of clusters
that PAM classified equals the number of active sensor nodes
that are placed in the unknown wireless topology. Each color
stands for a cluster. The number of data in each cluster is
tabulated in Table 1. The results in Table1 show that the
number of data points in each cluster is almost equal to the
average data number of the entire data, which means that the
clustering results are very reasonable.

However, not all results under different circumstances are
consistently correct. In some cases, the number of clusters is
less than the number of active nodes. The clusters that contain
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TaBLE 1: Number of data in each cluster. more nodes need to be further clustered in order to obtain

31050 27551 311550 31051 41551 more accurate results. In other cases, the number of clusters

Clusterl
Cluster2
Cluster3
Cluster4

is more than the number of active nodes. In these cases,
1334 2011 1289 1337 999 . . .

some clusters contain only a few nodes, which are obviously

1332 1989 1348 1357 1006 less than other clusters, can be regarded as bad clusters, and

1334 1373 1306 995 need to be excluded. These clusters are generated due to the

1000 noise or interference during transmission. All PAM results
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TABLE 2: PAM clustering results.

Receiver Sniffer0

Number of nodes 2 3 4

Packets size (bytes) 10 75 115 10 75 115 10 75 115

Clustering results 3 4 2 3 2 3 2 2 3

Further processing results 2 2 * * 3 * 4 6 4

Receiver Snifferl

Number of nodes 2 3 4

Packets size (bytes) 10 75 115 10 75 115 10 75 115

Clustering results 2 2 13 3 2 2 2 2 4

Further processing results * * 2 * 3 5 2 3 *

Receiver Sniffer2

Number of nodes 2 3 4

Packets size (bytes) 10 75 115 10 75 115 10 75 115

Clustering results 3 3 5 3 4 2 1 2 7

Further processing results 2 3 5 * 4 4 1 3 3

*No need to be further processed.

are shown in Table 2. In Table 2, there are 16 correct clustering
results in the total 27 circumstances; the rate of accuracy
is 59%. The results show that although it is not completely
reliable, PAM clustering method is indeed usable to classify
the data into corresponding number of groups.

6. Conclusion

In this paper, a practical network problem in WSN is pre-
sented. Different kinds of clustering mechanisms are pro-
posed as means to classify the RSSI and LQI data, which is
generated by the corresponding sensor nodes in the adjacent
wireless network when they are transmitting simultaneously.
RSSI is a distance based network parameter, which is a para-
meter to measure signal strength, while LQI is a metric
of the link quality of the received signal. Experiments and
literature prove that LQI data fluctuate very dramatically and
frequently during transmission. Neither RSSI nor LQI are
security parameters and both of them are easily recorded and
collected.

Three different clustering techniques are applied to ana-
lyze the RSSI and LQI data to explore their inherent char-
acteristics, from which information can be obtained about
the number of active nodes in a nearby unknown wireless
topology. Corresponding clustering results are shown in this
paper. Finally, PAM is capable of classifying the RSSI and
LQI data. This implies that, in a wireless network, RSSI and
LQI generated by sensor nodes indeed contain information of
how many nodes are transmitting data simultaneously in that
wireless network. These results were found by unsupervised
classification. Although PAM clustering method performs
better than GSD and hierarchical agglomerative clustering
method, its results are not reliably correct. Future research
should explore other clustering methods that perform better
than PAM clustering method.
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