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Abstract—Human Activity Recognition has been extensively
applied to fulfill tasks such as fall detection, human-computer
interaction, virtual reality, etc. Existing radio frequency-based
HAR methods, although overcoming limitations of wearable-,
visual-, and acoustic-based sensing technology, still suffer from
high costs and low efficiency, which limits their pervasive use. In
this paper, we propose LoDiHAR, a low-cost, distributed HAR
system leveraging Radio Frequency Identification technology.
LoDiHAR employs low-cost and fully programmable commercial
wireless components, providing full access to the PHY samples of
the backscattered signals, in which signal phases can be extracted
to infer different activities. Different from COTS RFID systems
that adopt a polling interrogation scheme, LoDiHAR supports a
distributed sensing scheme, which profiles human activities more
efficiently. LoDiHAR addresses a series of technical challenges
such as accurate phase extraction from backscattered signals,
asynchronous distributed RF data fusion and insufficient training
data. A Conditional Generative Adversarial Network framework
combined with a Transformer model is designed for accurate
time-series activity classification. LoDiHAR demonstrates pro-
ficiency in recognizing eight types of human activities across
diverse environments, achieving an accuracy of up to 94.9% while
only costing 10% of the mainstream COTS RFID systems.

Index Terms—RFID, low-cost, distributed sensing, data aug-
mentation.

I. INTRODUCTION

Motivation. Recent years have witnessed a huge prolif-
eration of Internet of Things devices and the application of
artificial intelligence technology in human activity recognition
(HAR). As shown in Fig. 1, HAR plays a crucial role across
various domains, including fall detection, virtual reality (VR)
and human-computer interaction (HCI). In the era where aging
is becoming increasingly severe, HAR technology facilitates
real-time monitoring of elderly individuals, enabling prompt
detection of accidents and ensuring their safety and health.
In education, HAR enhances interaction with instructional
multimedia, thereby improving the efficiency of both learning
and teaching experience. In the entertainment industry, such
as gaming and movies, HAR technology offers immersive
experiences for users. In security, HAR enables behavioral
analysis and helps prevent abnormal intrusion. So many poten-
tial application scenarios arouse extensive interest in research
for HAR, facilitating the exploration of more pervasive use,
low-cost and efficient technologies.

Prior works and limitations. Recent efforts have explored
the potential of various commercially available devices to
develop HAR systems. Existing HAR solutions primarily em-
ploy wearable sensors [14], [28], cameras [13], [21], acoustic
sensors [3], [25], [29], [33], or RF signal-based recognition

(b) VR. | (c) HI.

Fig. 1: HAR application scenarios (this figure is generated
by ChatGPT 4.0).

(a) Fall detection.

[4], [31], [34], [35]. Wearable sensor-based HAR requires the
user to constantly wear the devices and maintain persistent
network connectivity, which incurs extra burden for users
[14], [28]. Camera-based HAR struggles under poor light
conditions and is prone to raise significant privacy concerns
[7]1, [15]. Acoustic-based solutions offer contact-free HAR
and are unaffected by lighting, yet still suffer from narrow
bandwidth, rapid signal attenuation and a limited sensing range
[25], [27]. Frequency Modulated Continuous Wave (FMCW)
radar supports wider bandwidth, enabling fine-grained HAR.
However, the FMCW-based method entails specialized high-
end devices, which are expensive and hard for pervasive use
[17], [20]. Currently, WiFi-based HAR has been extensively
investigated due to its wide deployment in people’s daily lives
[9], [12], [31], [34]. Nevertheless, extracting channel state
information (CSI) on limited hardware as well as its relatively
low recognition resolution restrain its public use [31], [34].
RFID-based HAR is popularized for its passive, flexible and
low-cost tags [18], [24], [30], [35], [36]. RFID tags harvest
energy from the signals sent by RFID readers, eliminating the
need for built-in batteries and intricate circuit design, which
are small in size, cost-effective and flexible to deploy. Unfortu-
nately, despite the low cost of RFID tags, mainstream commer-
cial RFID readers tend to be expensive due to their complex
hardware design, advanced signal processing techniques and
patent barriers of the companies [30], [32]. More importantly,
although COTS RFID readers can employ multiple antennas to
enlarge the sensing coverage, the current standard EPC Gen2
protocol employs a polling communication scheme to prevent
communication collision among readers [8], which sacrifices
the read rate, rendering it inefficient for HAR applications.
In this study, we propose LoDiHAR, a low-cost and dis-
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tributed HAR system based on RFID technology, which is
robust across different environments and can accurately iden-
tify eight types of human activities. The hardware design of
LoDiHAR is based on a developed low-cost distributed sensing
system yet only costs 10% of mainstream COTS readers
[32], which poses great potential for economic and efficient
HAR applications. Specifically, the tag backscattered signals
can be simultaneously received by multiple receivers, which
captures the human body more efficiently and provides more
comprehensive information about human activities than that of
a polling scheme. LoDiHAR enables full access to the PHY
samples of RFID communication, in which signal phase can
be extracted to infer different activities.

Challenges. However, we face many practical challenges
when fulfilling HAR sensing tasks with such a low-cost
sensing system. The first challenge lies in how to accurately
distinguish between the PHY samples from absorb and reflect
states of the backscattered signal to measure the signal phase.
Existing approaches simply differentiate these two states based
on their distinct amplitude levels in PHY samples due to
the On-Off Keying (OOK) encoding scheme. However, our
extensive experiments reveal that human activity imposes sig-
nificant and non-negligible ambiguity on amplitudes of PHY
samples for two states in tag backscattered signal, primarily
due to significant multipath effects. As such, PHY samples for
both two states exhibit the same amplitude level, which are
unable to reliably separate, thereby significantly complicating
the phase extraction process.

The second challenge involves how to effectively capture
phase changes induced by the human body. LoDiHAR fully
leverages the distributed infrastructure by simultaneously re-
ceiving tag backscattered signals through multiple receivers.
However, when a human body moves within the detection
range, the impacted multipath to different receivers are dis-
tinct due to different propagation distances. As a result, the
extracted phase from each antenna is out of sync in both time
and space, even for the same activity. A key challenge lies
in how to effectively fuse the extracted signal phase from all
antennas, ensuring that the fused phase encompasses most of
the features captured by each individual antenna.

The third challenge stems from the inherent diversity of
human activities. In HAR, variations in human bodies and
individual habits result in phase diversity for the same activ-
ity, significantly degrading recognition accuracy. Specifically,
differences in body shapes, heights and weights as well as
different distances and speeds of the same activity remarkably
impact the backscattered signals, struggling with fluctuations
of the signal phase values for the same activity across different
individuals. An intuitive approach is to manually gather a
sufficient amount of data, which covers as much diversity as
possible. However, such a burdensome data collection is hard,
sometimes impractical, to implement in real-world settings.

Solutions. To effectively distinguish between the absorb and
reflect states in the tag backscattered signals, we exploit signal
phase instead of amplitude. Our intuition is that the phases of
backscattered signals corresponding to the two states are less

likely to be identical during human activities, which creates
two distinct clusters in the IQ plot. To further accurately map
the clusters to the corresponding state, we conduct a deep
investigation into the standard EPC Gen?2 protocol and select
typical PHY samples merely from CW (e.g., T1 defined in
EPC Gen2 protocol [8]) as a reference signal, as it shares
similar properties to the absorb state with regard to amplitude
and phase. By doing so, the cluster with the closest distance
to the T1 cluster in the I1Q plot can be assigned to absorb
state, while the cluster with the furthest distance is identified
as the reflect state. By accurately separating two states, phase
information can be extracted for HAR.

To fully leverage the information obtained from multiple re-
ceivers, we synthetically design a two-step data fusion scheme
to address the time and space asynchronization inherent in
multi-receiver system. In the first step, we align the phase
waveform extracted from multiple receivers by matching their
start and end points in the phase sequence of the activity
and then perform linear interpolation across all waveforms
ensuring that the length of the interpolated phase waveform
for all distributed receivers is unified, achieving temporally
synchronization among extracted phase sequences. In the
second step, we employ a weighted sum strategy to integrate
the phase information from all distributed receivers. The
weights are determined based on the phase variations at each
receiver. A phase waveform exhibiting more significant phase
variations is assigned a higher weight, thereby emphasizing
its signal characteristics, while a phase waveform with less
pronounced variations is assigned a lower weight. This strategy
effectively addresses the spatial asynchronization issues caused
by the different deployments of receivers, ensuring that the
measured phase sequence effectively retains the unique phase
characteristics captured by each receiver.

To release the burden of large-scale data collection, inspired
by the Time Series Data Augmentation (TSDA) scheme [1],
[2], we design a Conditional Generative Adversarial Net-
work (CGAN) based on Long Short-Term Memory (LSTM)
network. The CGAN is capable of generating high-quality
samples, while the LSTM effectively extracts temporal fea-
tures from the phase sequences. This is particularly important
because the phase values associated with human activities
are temporally related and contain rich information about the
sequential relationships inherent in typical activities. Such a
CGAN-based data augmentation scheme enables the automatic
generation of signal phase sequences covering human activity
diversity, significantly reducing the need for heavy manual data
collection and enhancing the accuracy of activity recognition.

We summarize our contributions as follows:

o We accurately distinguish between reflect and absorb
states using a low-cost RFID sensing platform, effectively
resolving amplitude ambiguity of PHY samples in tag
backscattered signals, and enabling precise phase extrac-
tion of the backscattered signal.

o We design a data fusion method for distributed parallel
sensing for HAR, effectively fusing data that are both
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temporally and spatially asynchronous from multiple re-
ceivers, thereby providing reliable data for HAR.

o We design a CGAN deep learning framework suitable
for time-series data augmentation, providing an effective
approach for generating large-scale datasets, remarkably
alleviating the burden from manual data collection.

II. BACKGROUND

The employed low-cost distributed RF sensing system en-
tirely consists of low-cost and general-purpose RF modules,
which decouple the functionality of full-duplex communica-
tion of COTS RFID readers into Tx-only and Rx-only modules
[32]. The transmitter employs an RFM69HW chip, which
only costs less than 5USD and supports the OOK encoding
scheme. The RFM69HW chip is controlled by being embedded
into an Arduino UNO R3 board (< 20USD ), as shown in
Fig. 2a. We kindly refer the readers to find how to connect
the IC pins of the RFM69HW chip to an Arduino board in
[6]. On the receiver side, an RTL-SDR dongle equipped with
RTL2832 ADC chip (< 25USD ) is applied to serve as a
sniffer to capture the tag backscattered signals. The circularly
polarized antenna (< 35U5D ) with 9dBi gain is employed
for both the transmitting and receiving antenna.

To successfully communicate with RFID tags, the employed
low-cost system strictly follows the design of the interrogation
step in the EPC Gen2 standard protocol [8]. In specific, the
transmitter is programmed to send Continuous Wave (CW)
and protocol-compatible commands to RFID tags, in which
the Query command is deeply investigated and re-encoded to
be compatible with the data format in REFM69HW chip. As
a result, the emitted Query commands in the air are exactly
the same as those generated by a COTS RFID reader in the
view of tags. After receiving the Query command, RFID tags
backscatter a 16-bit random number named RN16 prepended
with a pilot tone, in which the signal phase can be measured.

Fig. 2b shows an emitted Query command and tag replied
RNI16 in a single inventory round.

Note that this decoupling scheme significantly reduces the
complexity of hardware circuit design, and more importantly
supports distributed sensing with multiple receivers. Said dif-
ferently, tag backscattered signals can be simultaneously cap-
tured by multiple receivers, which is not supported by COTS
RFID systems that apply a polling interrogation scheme. A
series of practical challenges have been addressed to extract
accurate phase information from the backscattered signals,
including carrier frequency offset (CFO), self-interference
and cross-tech communication incurred by inevitable hard-
ware heterogeneity due to applied low-cost RF modules for
transmission and reception. We kindly refer the reader to
[32] for more details. In this study, we focus on addressing
particular challenges arising from employing this low-cost
and distributed sensing system to implement distributed and
efficient HAR.

III. SYSTEM DESIGN
A. System Overview
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Fig. 3: System overview.

Fig. 3 depicts the system overview of LoDiHAR. LoDiHAR
emits an excitation signal to activate the RFID tag and then
transmits Query command that are compatible with the EPC
Gen2 protocol to communicate with the tag. Once activated,
the tag replies RN16 in response to the Query command. This
backscattered signal, after undergoing multipath propagation
and reflection from the human body, is simultaneously re-
ceived by multiple distributed low-cost receivers. In the Phase
Extraction module, LoDiHAR first differentiates between two
states from the backscattered signals using signal phase. Next,
the environmental interference is effectively eliminated from
the extracted phase, obtaining phase information that is exclu-
sively influenced by human movements. Third, the extracted
phase values for each receiver are fused both temporally and
spatially using our dedicatedly designed fusion algorithm in
the Data Fusion module. The fused phase effectively captures
the variations in multipath propagation caused by human
activity. Finally, to cover the diversity of human activities as
much as possible, we employ a CGAN model to augment the
fused phase sequence, followed by a Transformer model to
extract features and recognize the activities.
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B. Differentiate between Absorb and Reflect States

An RFID tag backscatters its signal using the OOK modu-
lation scheme, which generates two distinct states, i.e., reflect
state and absorb state. The phase of the backscattered signals
can be measured between these two states if they can be
clearly distinguished, which is a prerequisite for correct phase
measurement [32]. Intuitively, one can simply differentiate
these two states on the basis of their amplitudes on PHY
samples due to their different electrical levels between CW
and tag modulated signals induced by OOK scheme, as shown
in Fig. 2b. Sensing tasks that impose distinct phase variations
in the backscattered signals, such as object localization and
human breath monitoring, can be fulfilled by configuring an
appropriate threshold to differentiate between these two states,
thereby enabling accurate extraction of phase information.

However, our extensive experiments manifest that the ampli-
tude of the backscattered signal can be significantly impacted
by human activities due to their multipath effects on signal
energy, resulting in similar amplitude levels for both states.
Fig. 4a illustrates the received RN16 PHY samples in one of
the inventory rounds when a user performs activities within the
sensing range of the low-cost system. The amplitude of PHY
samples in RN16 exhibits a flat pattern, indicating that both
absorb and reflect states share the same amplitude level. Such
an ambiguity of amplitudes poses difficulties in differentiating
between these two states of the backscattered signal, hindering
reliable phase extraction.

To effectively separate the two states, we first project the
PHY samples of RN16 pilot tone into an IQ plot, as shown
in Fig. 4b. Two states share the same length of radius due to
their similar amplitude, while can still be clearly separated by
different phases (i.e., angles). However, it remains essential to
accurately assign the states to each cluster for phase extraction.
To this end, we introduce a reference state, which is derived
from PHY samples collected in T1 duration in the same
inventory round, as shown in Fig. 2b. This is because PHY
samples in T1 characterize CW patterns that are similar to the
absorbing pattern in RN16, which can be directly obtained
in each inventory round. Luckily, in the EPC Gen2 protocol,
the minimal length of T1 is defined as 268us [8], which
yields a sufficient number of samples (i.e., approximately 268
at a 1M Hz sampling rate) and is easy to segment from an
inventory round.
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Fig. 5: Environmental interference removal.

Therefore, we simultaneously project these T1 PHY samples
and those from two states in the same inventory into the same
1Q plot, as depicted in Fig. 4c. Due to the similar pattern in T1
and absorb state in RN 16, the reference cluster (i.e., the green
cluster) closely overlaps with the RN16 absorb state. More
importantly, the reference cluster is clearly isolated from the
reflect state due to different phases. Thus, the cluster center
closer in Euclidean distance to the reference state can be
identified as the absorb state, while the other cluster indicates
the reflect state. By doing so, two states of tag can be distinctly
differentiated for phase extraction, even when they share the
same amplitude in PHY samples.

C. Elimination of Environmental Interference

After differentiating two states, we can now continuously
measure the phase inventory by inventory, calculating the
relative angle between two clusters to infer human activities.
Fig. 5a shows the measured phase when a user repeats standing
up for a while followed by sitting down for a while twice. The
phase waveform slightly fluctuates when the user performs
activities while remaining stable when the user keeps static,
as depicted by the blue line. Such a small fluctuation in phase
sometimes becomes even undetectable due to strong static
reflection from the environment (e.g., the red line in Fig. 5b),
resulting in an extremely small phase (i.e., A6 in Fig. 5b).

Current studies eliminate the static component and extract
dynamic component by estimating the center of the superim-
posed backscattered signals using circle fitting methods. The
vector between the origin and the estimated center is regarded
as the static component. This is because commercial RFID
readers only output the phase of superimposed backscattered
signal, without providing access to the PHY data. However,
this method is effective only under the assumption that the
superimposed signal forms an arc of a standard circle, which,
however, is difficult to guarantee in practice. We plot the
estimated static component derived from circle fitting and the
actual static component extracted from PHY samples without
human activity in Fig. 5b. The estimated static component
significantly deviates from the one that is actually measured in
both amplitude and phase, indicating that using the estimated
static component may yield inaccurate phase information.

In our work, LoDiHAR employs a low-cost and distributed
RF sensing system, which supports full access to the PHY
samples of the backscattered signals. In another word, we
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can directly obtain the raw PHY samples of the entire com-
munication, involving the static component. In specific, we
measure the static component by averaging a certain period of
PHY samples in the absence of human activity, then perform
vector subtraction to remove it from the PHY samples when
performing activity. By doing so, the static reflection from the
environment can be successfully canceled out, only remaining
the phase induced by human activities.

The green curve in Fig. 5a illustrates the signal phase after
applying our interference elimination method. The phase fluc-
tuation significantly increases from 0.5 radians to 3.1 radians
when only dynamic component is extracted, demonstrating a
successful environmental interference mitigation. In addition,
considering the environmental variations, we ensure timely
updates of the static component by acquiring CW signals close
to the tag backscattered signal in the same inventory round.

D. Distributed Phase Fusion

Implementing distributed sensing for HAR offers the poten-
tial to profile human activities with more reliable information.
However, COTS RFID systems apply a polling interrogation
scheme for multiple receivers such that only a single receiver
is permitted to receive the backscattered signal at any given
time slot. While this polling scheme effectively avoids com-
munication collision, it results in inefficient data collection,
particularly for tasks involving time series data, such as HAR.

To effectively capture reliable phase features incurred by
human activities, we fully exploit the distributed characteristics
of the employed low-cost sensing system. Specifically, we
can deploy one transmitter to communicate with the tag and
multiple receivers to concurrently receive the tag backscattered
signal thanks to the decoupled functionalities of a duplex
communication scheme, as shown in Fig. 6. As such, the tag
backscattered signals can be received by each receiver in a
parallel manner, which potentially provides richer information
than polling communication scheme.

An intuitive data fusion method involving summing up the
measured phase from all receivers when performing activi-
ties. However, simply adding multiple phases from different
receivers is inherently difficult in distributed systems for
two primary reasons. First, the propagation distance of the
backscattered signal received by each receiver is distinct,
particularly in reflections from the human body, resulting
in temporal asynchronization of phase sequences extracted
from each receiver. Second, variations in propagation distance
incur different phase information for each receiver, leading to
spatially asynchronous phase values for the same activity.

To address temporal asynchronization, we begin by connect-
ing all receivers to a central hub, allowing us to configure the
receiver such that all receivers start to sniff the communication
channel at exactly the same time. We record the time stamp
of the received backscattered signal for each receiver at a
sampling rate of 1M/s and segment the phase sequence based
on the timestamp when performing activities. Typically, we
measure a single phase value for each inventory round, where
the first point of RN16 serves as the timestamp of this phase
value. Next, we identify the latest timestamp at the beginning
of all phase sequences and the earliest timestamp at the end
of these sequences to establish the start and end points of the
recorded activity. Fig. 7a shows the aligned phase sequence
for a fall activity collected by four receivers in parallel. For
this particular fall activity, timestamps of 0.061s and 1.135s
are selected as the start and end points, respectively.

However, phase sequences from all receivers are still asyn-
chronous due to the multipath of the backscattered signals. To
further align the phase values corresponding to each times-
tamp, we employ linear interpolation to supplement the phase
sequences across all receivers to the same length. Specifically,
in Fig. 7b, when a phase value for a given antenna is missing
at a particular timestamp (i.e., the phase value at 0.536s
for Data2), we supplement this missing phase value through
linear interpolation between the two adjacent phase values
(i.e., 0.511s and 0.561s). By iteratively applying this method
across all sequences, we can achieve strict synchronization of
the phase sequences for all receivers, ensuring that they are
aligned across all timestamps.

To tackle spatial asynchronization induced by differ-
ent phase variations among receivers, we fuse the time-
synchronized phase sequences from all receivers by perform-
ing a weighted sum strategy. Our intuition is that the signal
phase is linearly correlated with the propagation distance of the
backscattered signals. As such, a phase waveform exhibiting
more pronounced variations can be assigned to a higher
weight, thereby highlighting its characteristics of human ac-
tivity. In contrast, a lower weight is assigned to the waveform
characterized by lower amplitude fluctuations. The assigned
weight can be calculated as W; = A;/ > | A;, where W;
represents the weight assigned to each receiver, A; denotes the
difference between max and min phase for receiver ¢, and n is
the total number of receivers. Therefore, the weighted phase
sequence can be expressed as A = Z?:l W, x 0;, where 60;
is the phase for receiver .
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Fig. 8 depicts the results of our data fusion for a particular
fall activity. We measure the correlation between the fused
phase sequence and the one from each receiver. The average
similarity exceeds 0.89, proving that the fused phase sequence
retains the information from each receiver. By employing the
weighted sum strategy, we can effectively integrate the phase
features across all receivers, allowing for a more significant
representation of the phase sequence and providing more
reliable data for HAR.

E. Data Augmentation

In HAR tasks, a straightforward method to acquire train-
ing data involves manually collecting a sufficient amount of
activity data, which covers as much diversity of activities as
possible. However, such a burdensome data collection process
is hard, or even impossible, to conduct in practice. Inspired
by the effectiveness of the Time Series Data Augmentation
approach [10], we design a CGAN model based on LSTM
network to automatically generate activity-related phase se-
quences, as shown in Fig. 9. In our HAR scenario, the Gen-
erator and Discriminator fulfill complementary roles, where
the Generator responses for producing synthetic time series
phase sequences that aim to be indistinguishable from real-
world measurements, while the Discriminator evaluates the
authenticity of the presented phase sequences. This adversarial
process facilitates the Generator to iteratively enhance its
outputs until the Discriminator is unable to reliably identify
the source of the phase sequences.

The Generator in the CGAN for LoDiHAR incorporates
an LSTM unit with 64 hidden units, coupled with an MLP
consisting of 6 layers. Furthermore, the discriminator is de-
signed with a bidirectional LSTM that adeptly captures the
impact of both preceding and subsequent states on the current
state within time-series phase sequences, complemented by an
MLP consists of 5 layers. Finally, we employ a transformer
model, which manifests superior performance in time series
classification, as our classifier to effectively distinguish among
eight types of activities.

(a) Room1.

(b) Room2.
Fig. 10: Three different rooms.
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IV. EXPERIMENTS AND EVALUATION
A. Experiment Setup.

1) Hardware: The experiment setup is illustrated in Fig.
11. LoDiHAR applies an Arduino Uno R3 board to control
the RFM69HW chip, enabling the emission of CW and Query
command at a carrier frequency of 915MHz to illuminate and
communicate with RFID tag. Unlike the system implementa-
tion presented in [32], we enhance the low-cost RF sensing
system by integrating all components onto a single PCB
board for higher system stability. Four identical commodity
RTL-SDR dongles equipped with an RTL2832 ADC chip are
employed as the receiver. All receivers are connected to a
central hub for synchronization. Signal reception is configured
using GnuRadio, which captures backscattered signals from
the tags at a sampling rate of 1M/s, outputting complex values
of the PHY samples.

2) Data collection and Model Training: We invite eight
volunteers (five males and three females) to radomly perform
eight types of activities across three rooms with varying sizes
and layouts. The dimensions of these rooms are 6 m X 3 m x
3m,7mx4mx3mand 9 mx9 m x 3 m, respectively,
as depicted in the Fig. 10. Each activity is performed 300
times with different speeds and distances, resulting in a total
of 57600 phase sequences. To augment the collected dataset,
we apply a data augmentation factor of 25X to enhance the
dataset using our designed CGAN model.

We use Matlab to extract phase information from the tag
backscattered signals. The training and testing of both CGAN
and the HAR classifier are conducted using Pytorch on a
PC server equipped with 32 GB of RAM, an Intel Core
i7-13700K CPU from the 13th Generation lineup, and an
NVIDIA GeForce RTX 4070 GPU. The dataset is carefully
partitioned into three subsets for model evaluation: 80% for
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Fig. 12: Overall performance. Fig.
training to capture underlying data patterns, 10% for testing
to assess model accuracy on new data, and 10% for validation
to fine-tune hyper-parameters and prevent overfitting.

B. Evaluation

1) Overall system performance: Fig. 12 illustrates the con-
fusion matrix that demonstrates the overall performance of
LoDiHAR across all eight activities and various environments.
For this evaluation, we utilize a hybrid dataset including both
real collected and augmented data during training and testing.
LoDiHar achieves an average recognition accuracy of 94.9%,
with the accuracy for each individual activity exceeding 92.0%
across diverse experiment settings. Our holistic design of
LoDiHAR not only ensures cost-effectiveness and robustness
but also delivers high accuracy in recognizing human activi-
ties, offering a significant potential to broaden the applicability
of RFID-based HAR systems.

2) Comparison with COTS RFID reader: We evaluate the
performance of LoDiHAR in comparison to the mainstream
Impinj Speedway R420 reader, connecting four antennas to the
Impinj reader and performing the same data fusion method and
data augmentation strategy used in our study. The experiments
are conducted in a single room, ensuring other experiment
settings remain the same. The experiment result are shown in
Fig. 13. LoDiHAR achieves an average precision of 94.9% in
identifying various human activities, which outperforms that
of the Impinj R420 reader. Such a superior performance owns
to the distributed system design and our comprehensive data
fusion approach, effectively maintaining a high read rate with
an increased number of antennas while ensuring reliable phase
information. In contrast, Impinj R420 operates on a polling
communication scheme, which inherently limits the amount
of information for HAR.

3) Performance on environmental interference mitigation:
To validate the effectiveness of our environmental interference
mitigation (EIM) method, we compared the performance of
LoDiHAR before and after applying the interference elimi-
nation algorithm. Throughout the experiments, all other ex-
perimental settings are kept constant. Receivers are deployed
in three different rooms at a distance of over 2 meters from
the tag and the volunteers are allowed to perform activities in
random speeds and distances. Fig. 14 depicts that the system
performance manifests a substantial enhancement of 28%
when employing our environmental interference mitigation
algorithm, rising from 66% to 94%, thereby demonstrating
the efficacy of our EIM approach.

13: Comparison with RFID reader.
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Fig. 14: Performance on EIM.

4) Performance on different numbers of receivers: To eval-
uate the effectiveness of LoDiHAR in recognizing human
activities using multiple receivers, we conduct an experiment
with an increasing number of receivers. During this exper-
iment, we maintained a constant experiment settings across
different rooms, while only varying the number of receivers.
Fig. 15 presents the results of the experiment. As the number
of receivers increases from 1 to 4, the performance of LoDi-
HAR correspondingly improves from 90% to 94.9%. This
experiment result validates that the use of multiple receivers
enhances the system’s ability to capture rich information about
human activities, thereby improving the effectiveness of HAR.
Importantly, LoODiHAR can flexibly add more receivers thanks
to its distributed architecture, which provides a potential for
HAR in more challenging environments.

5) Performance on Data Augmentation: In this evaluation,
we test the impact of varying data augmentation factors on
LoDiHAR to verify the effectiveness of our CGAN model.
We employ the F1 score as our evaluation metric, as it is a
comprehensive indicator that takes into account both precision
and recall. We vary the augmentation factor from 1x to 35X
applied to our collected phase sequences while keeping all
other experiment settings the same. As shown in Fig. 16,
the performance of LoDiHAR significantly improves in accor-
dance with the elevated augmentation factors. However, when
the augmentation factor exceeds 25, the system performance
slightly degrades since the augmented data at higher factors
is prone to cause overfitting problem. Therefore, we adopt
augmentation factors of 25x for model training.

6) Performance on Different Environments: In this evalu-
ation, we conduct experiments across three different rooms
with different sizes and layouts. For each room, we collect
and augment the phase sequences to train a model, while
applying this model to test the phase sequences collected
from the other two rooms. As the experiment results depicted
in Fig. 17, LoDiHAR still achieves an average precision of
90% for HAR, even when the model had not been trained
in the unseen environments. The model trained in the rooml
achieves the best performance due to its relatively simple
layout, resulting in less multipath and more reliable collected
phase information.

7) Performance on Different Distances: We evaluate LoDi-
HAR for identifying all eight activities performed at varying
distances from the receivers. In this evaluation, we maintain a
constant distance between the transmitter and tag to guarantee
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Fig. 16: Performance on

the activation of the tag while varying the distance between
receivers and tag. Each activity is repeated 300 times in room3.
At each distance, a data augmentation factor of 25x is applied
to the collected phase sequences. As shown in Fig. 18, the
performance of LoDiHAR slightly decreases from 94% to
92% across all distances. The precision at a distance of 3m
still achieves 92%, demonstrating the significant robustness of
our LoDiHAR system. Note that the distance could be further
enhanced by adding an RF amplifier for the receive antennas.

V. RELATED WORK
A. Wearable Device Based HAR

Wearable sensors have been widely applied in HAR due
to their capability to monitor the physiological parameters
of the human body [14], [16], [23], [28]. A Fall Detection
System is explored using the frequency of the inertial sensor
across various datasets, demonstrating the effectiveness of
deep neural networks for HAR [23]. Salient features from
sensor data are extracted via Gaussian kernel-based principal
component analysis and Z-score normalization, followed by
training a deep CNN for HAR [28]. However, wearable device
based methods encounter limitations in real-time transmission
of raw inertial signals from wearable devices to servers due
to high sampling rates and unstable communication networks.
Crucial fall features in the inertial signal are used to achieve
high fall detection accuracy with reduced data, thereby im-
proving real-time performance [16]. However, the requirement
for continuous wearing of the devices and persistent network
connectivity pose burdensome for users [14].

B. Vision Based HAR

The combination of cameras with advanced deep learn-
ing technologies has significantly enhanced HAR in recent
decades, enabling contact-free HAR [11], [13], [19], [21],
[26]. ActivityNet provided an initial overview of vision-based
HAR, focusing on conventional image processing methods
[13]. Poppe [19] highlights the shift from traditional feature
extraction to using Convolutional Neural Networks for com-
plex activity recognition. UESTC-MMEA-CL [11] combines
LSTM networks with CNN to capture temporal information
of activities in videos. OFF [26] tackles real-time HAR,
proposing a dual-stream CNN architecture that efficiently pro-
cesses spatial and temporal data, enhancing real-time activity
recognition. However, vision-based approaches are restricted
by their reliance on good lighting conditions. Furthermore,
they are prone to raise privacy concerns [21].

different augmentation factors.
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C. Acoustic Based HAR

The pervasive application of speakers and microphones
embedded in smart devices has greatly facilitated acoustic-
based HAR [3], [22], [25], [27], [29], [33]. RobuCIR enables
identifying 15 gestures by extracting the channel impulse
response of the acoustic signals [33], effectively recognizing
gestures with varying duration, speed, and range. Vskin [25]
achieves a more fine-grained hand motion recognition on the
back surface of mobile devices when holding the devices by
measuring multiple fingers’ movement. Those works, however,
can merely identify human motions in near-field scenarios (i.e.,
< 1m) by intentionally discarding the far-field interference.
RemoteGesture [27] extends the acoustic sensing range by
correlating the length of the transmitted signal with the sensing
distances. However, acoustic-based solutions are constrained
by the narrow bandwidth and rapid signal attenuation for far-
field HAR.

D. RF Based HAR

RF sensing technology has become increasingly popular
in human activity recognition due to the fact that human
motion influences the propagation of RF signals, affecting
both signal strength and phase [4], [5], [17], [31], [34], [35].
WiFall [34] successfully implemented HAR using WiFi by
utilizing the amplitude and phase of channel state information
(CSI). RTFall [31] demonstrated the capability of applying
WiFi routers to detect human falls. However, extracting CSI
on limited hardware and relatively low recognition resolution
in WiFi signals limit its widespread application. A novel dy-
namic range-Doppler trajectory (DRDT) method based on the
FMCW radar system is proposed to achieve fine-grained HAR
[17], as FMCW radar operates with a wider frequency band-
width. Nevertheless, FMCW-based method entails specialized
high-end devices, which are expensive and hard for pervasive
use. TACT [35] achieves accurate HAR recognition of eight
activities through COTS RFID system. Yet, the relatively high
cost of RFID readers and the polling mechanism in multi-
antenna modes hinder its large-scale deployment. In contrast
to these approaches, LoDiHAR is superior in achieving cost-
effective and distributed RF sensing for HAR.

VI. CONCLUSION

This study proposes LoDiHAR, a cost-effective and dis-
tributed sensing system for HAR based on RFID technology.
LoDiHAR entirely consists of low-cost general-purpose RF
modules and provides full access to the PHY samples of
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the backscattered signals. LoDiHAR first extracts phase in-
formation by accurately differentiating the reflect and absorb
states in the backscattered signals. Then a comprehensive data
fusion method is designed to integrate the extracted phase from
distributed receivers, yielding a reliable phase sequence for
HAR. Finally, LoDiHAR automatically generates a sufficient
amount of training data from a limited number of collected
data by employing a deep learning framework, effectively
capturing the human activity diversity across different users.
Extensive experiments demonstrate that LoDiHAR achieves
an overall accuracy of 94.9% across various settings and

environments.
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