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Abstract—Human Activity Recognition has been extensively
applied to fulfill tasks such as fall detection, human-computer
interaction, virtual reality, etc. Existing radio frequency-based
HAR methods, although overcoming limitations of wearable-,
visual-, and acoustic-based sensing technology, still suffer from
high costs and low efficiency, which limits their pervasive use. In
this paper, we propose LoDiHAR, a low-cost, distributed HAR
system leveraging Radio Frequency Identification technology.
LoDiHAR employs low-cost and fully programmable commercial
wireless components, providing full access to the PHY samples of
the backscattered signals, in which signal phases can be extracted
to infer different activities. Different from COTS RFID systems
that adopt a polling interrogation scheme, LoDiHAR supports a
distributed sensing scheme, which profiles human activities more
efficiently. LoDiHAR addresses a series of technical challenges
such as accurate phase extraction from backscattered signals,
asynchronous distributed RF data fusion and insufficient training
data. A Conditional Generative Adversarial Network framework
combined with a Transformer model is designed for accurate
time-series activity classification. LoDiHAR demonstrates pro-
ficiency in recognizing eight types of human activities across
diverse environments, achieving an accuracy of up to 94.9% while
only costing 10% of the mainstream COTS RFID systems.

Index Terms—RFID, low-cost, distributed sensing, data aug-
mentation.

I. INTRODUCTION

Motivation. Recent years have witnessed a huge prolif-

eration of Internet of Things devices and the application of

artificial intelligence technology in human activity recognition

(HAR). As shown in Fig. 1, HAR plays a crucial role across

various domains, including fall detection, virtual reality (VR)

and human-computer interaction (HCI). In the era where aging

is becoming increasingly severe, HAR technology facilitates

real-time monitoring of elderly individuals, enabling prompt

detection of accidents and ensuring their safety and health.

In education, HAR enhances interaction with instructional

multimedia, thereby improving the efficiency of both learning

and teaching experience. In the entertainment industry, such

as gaming and movies, HAR technology offers immersive

experiences for users. In security, HAR enables behavioral

analysis and helps prevent abnormal intrusion. So many poten-

tial application scenarios arouse extensive interest in research

for HAR, facilitating the exploration of more pervasive use,

low-cost and efficient technologies.

Prior works and limitations. Recent efforts have explored

the potential of various commercially available devices to

develop HAR systems. Existing HAR solutions primarily em-

ploy wearable sensors [14], [28], cameras [13], [21], acoustic

sensors [3], [25], [29], [33], or RF signal-based recognition

(a) Fall detection. (b) VR. (c) HCI.

Fig. 1: HAR application scenarios (this figure is generated
by ChatGPT 4.0).

[4], [31], [34], [35]. Wearable sensor-based HAR requires the

user to constantly wear the devices and maintain persistent

network connectivity, which incurs extra burden for users

[14], [28]. Camera-based HAR struggles under poor light

conditions and is prone to raise significant privacy concerns

[7], [15]. Acoustic-based solutions offer contact-free HAR

and are unaffected by lighting, yet still suffer from narrow

bandwidth, rapid signal attenuation and a limited sensing range

[25], [27]. Frequency Modulated Continuous Wave (FMCW)

radar supports wider bandwidth, enabling fine-grained HAR.

However, the FMCW-based method entails specialized high-

end devices, which are expensive and hard for pervasive use

[17], [20]. Currently, WiFi-based HAR has been extensively

investigated due to its wide deployment in people’s daily lives

[9], [12], [31], [34]. Nevertheless, extracting channel state

information (CSI) on limited hardware as well as its relatively

low recognition resolution restrain its public use [31], [34].

RFID-based HAR is popularized for its passive, flexible and

low-cost tags [18], [24], [30], [35], [36]. RFID tags harvest

energy from the signals sent by RFID readers, eliminating the

need for built-in batteries and intricate circuit design, which

are small in size, cost-effective and flexible to deploy. Unfortu-

nately, despite the low cost of RFID tags, mainstream commer-

cial RFID readers tend to be expensive due to their complex

hardware design, advanced signal processing techniques and

patent barriers of the companies [30], [32]. More importantly,

although COTS RFID readers can employ multiple antennas to

enlarge the sensing coverage, the current standard EPC Gen2

protocol employs a polling communication scheme to prevent

communication collision among readers [8], which sacrifices

the read rate, rendering it inefficient for HAR applications.

In this study, we propose LoDiHAR, a low-cost and dis-
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tributed HAR system based on RFID technology, which is

robust across different environments and can accurately iden-

tify eight types of human activities. The hardware design of

LoDiHAR is based on a developed low-cost distributed sensing

system yet only costs 10% of mainstream COTS readers

[32], which poses great potential for economic and efficient

HAR applications. Specifically, the tag backscattered signals

can be simultaneously received by multiple receivers, which

captures the human body more efficiently and provides more

comprehensive information about human activities than that of

a polling scheme. LoDiHAR enables full access to the PHY

samples of RFID communication, in which signal phase can

be extracted to infer different activities.

Challenges. However, we face many practical challenges

when fulfilling HAR sensing tasks with such a low-cost

sensing system. The first challenge lies in how to accurately

distinguish between the PHY samples from absorb and reflect

states of the backscattered signal to measure the signal phase.

Existing approaches simply differentiate these two states based

on their distinct amplitude levels in PHY samples due to

the On-Off Keying (OOK) encoding scheme. However, our

extensive experiments reveal that human activity imposes sig-

nificant and non-negligible ambiguity on amplitudes of PHY

samples for two states in tag backscattered signal, primarily

due to significant multipath effects. As such, PHY samples for

both two states exhibit the same amplitude level, which are

unable to reliably separate, thereby significantly complicating

the phase extraction process.

The second challenge involves how to effectively capture

phase changes induced by the human body. LoDiHAR fully

leverages the distributed infrastructure by simultaneously re-

ceiving tag backscattered signals through multiple receivers.

However, when a human body moves within the detection

range, the impacted multipath to different receivers are dis-

tinct due to different propagation distances. As a result, the

extracted phase from each antenna is out of sync in both time

and space, even for the same activity. A key challenge lies

in how to effectively fuse the extracted signal phase from all

antennas, ensuring that the fused phase encompasses most of

the features captured by each individual antenna.

The third challenge stems from the inherent diversity of

human activities. In HAR, variations in human bodies and

individual habits result in phase diversity for the same activ-

ity, significantly degrading recognition accuracy. Specifically,

differences in body shapes, heights and weights as well as

different distances and speeds of the same activity remarkably

impact the backscattered signals, struggling with fluctuations

of the signal phase values for the same activity across different

individuals. An intuitive approach is to manually gather a

sufficient amount of data, which covers as much diversity as

possible. However, such a burdensome data collection is hard,

sometimes impractical, to implement in real-world settings.

Solutions. To effectively distinguish between the absorb and

reflect states in the tag backscattered signals, we exploit signal

phase instead of amplitude. Our intuition is that the phases of

backscattered signals corresponding to the two states are less

likely to be identical during human activities, which creates

two distinct clusters in the IQ plot. To further accurately map

the clusters to the corresponding state, we conduct a deep

investigation into the standard EPC Gen2 protocol and select

typical PHY samples merely from CW (e.g., T1 defined in

EPC Gen2 protocol [8]) as a reference signal, as it shares

similar properties to the absorb state with regard to amplitude

and phase. By doing so, the cluster with the closest distance

to the T1 cluster in the IQ plot can be assigned to absorb

state, while the cluster with the furthest distance is identified

as the reflect state. By accurately separating two states, phase

information can be extracted for HAR.

To fully leverage the information obtained from multiple re-

ceivers, we synthetically design a two-step data fusion scheme

to address the time and space asynchronization inherent in

multi-receiver system. In the first step, we align the phase

waveform extracted from multiple receivers by matching their

start and end points in the phase sequence of the activity

and then perform linear interpolation across all waveforms

ensuring that the length of the interpolated phase waveform

for all distributed receivers is unified, achieving temporally

synchronization among extracted phase sequences. In the

second step, we employ a weighted sum strategy to integrate

the phase information from all distributed receivers. The

weights are determined based on the phase variations at each

receiver. A phase waveform exhibiting more significant phase

variations is assigned a higher weight, thereby emphasizing

its signal characteristics, while a phase waveform with less

pronounced variations is assigned a lower weight. This strategy

effectively addresses the spatial asynchronization issues caused

by the different deployments of receivers, ensuring that the

measured phase sequence effectively retains the unique phase

characteristics captured by each receiver.

To release the burden of large-scale data collection, inspired

by the Time Series Data Augmentation (TSDA) scheme [1],

[2], we design a Conditional Generative Adversarial Net-

work (CGAN) based on Long Short-Term Memory (LSTM)

network. The CGAN is capable of generating high-quality

samples, while the LSTM effectively extracts temporal fea-

tures from the phase sequences. This is particularly important

because the phase values associated with human activities

are temporally related and contain rich information about the

sequential relationships inherent in typical activities. Such a

CGAN-based data augmentation scheme enables the automatic

generation of signal phase sequences covering human activity

diversity, significantly reducing the need for heavy manual data

collection and enhancing the accuracy of activity recognition.

We summarize our contributions as follows:

• We accurately distinguish between reflect and absorb

states using a low-cost RFID sensing platform, effectively

resolving amplitude ambiguity of PHY samples in tag

backscattered signals, and enabling precise phase extrac-

tion of the backscattered signal.

• We design a data fusion method for distributed parallel

sensing for HAR, effectively fusing data that are both
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(a) Low-cost RF system.

(b) The received physical samples.

Fig. 2: Low-cost RF system and PHY samples.

temporally and spatially asynchronous from multiple re-

ceivers, thereby providing reliable data for HAR.

• We design a CGAN deep learning framework suitable

for time-series data augmentation, providing an effective

approach for generating large-scale datasets, remarkably

alleviating the burden from manual data collection.

II. BACKGROUND

The employed low-cost distributed RF sensing system en-

tirely consists of low-cost and general-purpose RF modules,

which decouple the functionality of full-duplex communica-

tion of COTS RFID readers into Tx-only and Rx-only modules

[32]. The transmitter employs an RFM69HW chip, which

only costs less than 5USD and supports the OOK encoding

scheme. The RFM69HW chip is controlled by being embedded

into an Arduino UNO R3 board (< 20USD ), as shown in

Fig. 2a. We kindly refer the readers to find how to connect

the IC pins of the RFM69HW chip to an Arduino board in

[6]. On the receiver side, an RTL-SDR dongle equipped with

RTL2832 ADC chip (< 25USD ) is applied to serve as a

sniffer to capture the tag backscattered signals. The circularly

polarized antenna (< 35USD ) with 9dBi gain is employed

for both the transmitting and receiving antenna.

To successfully communicate with RFID tags, the employed

low-cost system strictly follows the design of the interrogation

step in the EPC Gen2 standard protocol [8]. In specific, the

transmitter is programmed to send Continuous Wave (CW)

and protocol-compatible commands to RFID tags, in which

the Query command is deeply investigated and re-encoded to

be compatible with the data format in RFM69HW chip. As

a result, the emitted Query commands in the air are exactly

the same as those generated by a COTS RFID reader in the

view of tags. After receiving the Query command, RFID tags

backscatter a 16-bit random number named RN16 prepended

with a pilot tone, in which the signal phase can be measured.

Fig. 2b shows an emitted Query command and tag replied

RN16 in a single inventory round.
Note that this decoupling scheme significantly reduces the

complexity of hardware circuit design, and more importantly

supports distributed sensing with multiple receivers. Said dif-

ferently, tag backscattered signals can be simultaneously cap-

tured by multiple receivers, which is not supported by COTS

RFID systems that apply a polling interrogation scheme. A

series of practical challenges have been addressed to extract

accurate phase information from the backscattered signals,

including carrier frequency offset (CFO), self-interference

and cross-tech communication incurred by inevitable hard-

ware heterogeneity due to applied low-cost RF modules for

transmission and reception. We kindly refer the reader to

[32] for more details. In this study, we focus on addressing

particular challenges arising from employing this low-cost

and distributed sensing system to implement distributed and

efficient HAR.

III. SYSTEM DESIGN

A. System Overview

Fig. 3: System overview.

Fig. 3 depicts the system overview of LoDiHAR. LoDiHAR

emits an excitation signal to activate the RFID tag and then

transmits Query command that are compatible with the EPC

Gen2 protocol to communicate with the tag. Once activated,

the tag replies RN16 in response to the Query command. This

backscattered signal, after undergoing multipath propagation

and reflection from the human body, is simultaneously re-

ceived by multiple distributed low-cost receivers. In the Phase

Extraction module, LoDiHAR first differentiates between two

states from the backscattered signals using signal phase. Next,

the environmental interference is effectively eliminated from

the extracted phase, obtaining phase information that is exclu-

sively influenced by human movements. Third, the extracted

phase values for each receiver are fused both temporally and

spatially using our dedicatedly designed fusion algorithm in

the Data Fusion module. The fused phase effectively captures

the variations in multipath propagation caused by human

activity. Finally, to cover the diversity of human activities as

much as possible, we employ a CGAN model to augment the

fused phase sequence, followed by a Transformer model to

extract features and recognize the activities.
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Fig. 4: Differentiate two states with reference state.

B. Differentiate between Absorb and Reflect States

An RFID tag backscatters its signal using the OOK modu-

lation scheme, which generates two distinct states, i.e., reflect

state and absorb state. The phase of the backscattered signals

can be measured between these two states if they can be

clearly distinguished, which is a prerequisite for correct phase

measurement [32]. Intuitively, one can simply differentiate

these two states on the basis of their amplitudes on PHY

samples due to their different electrical levels between CW

and tag modulated signals induced by OOK scheme, as shown

in Fig. 2b. Sensing tasks that impose distinct phase variations

in the backscattered signals, such as object localization and

human breath monitoring, can be fulfilled by configuring an

appropriate threshold to differentiate between these two states,

thereby enabling accurate extraction of phase information.

However, our extensive experiments manifest that the ampli-

tude of the backscattered signal can be significantly impacted

by human activities due to their multipath effects on signal

energy, resulting in similar amplitude levels for both states.

Fig. 4a illustrates the received RN16 PHY samples in one of

the inventory rounds when a user performs activities within the

sensing range of the low-cost system. The amplitude of PHY

samples in RN16 exhibits a flat pattern, indicating that both

absorb and reflect states share the same amplitude level. Such

an ambiguity of amplitudes poses difficulties in differentiating

between these two states of the backscattered signal, hindering

reliable phase extraction.

To effectively separate the two states, we first project the

PHY samples of RN16 pilot tone into an IQ plot, as shown

in Fig. 4b. Two states share the same length of radius due to

their similar amplitude, while can still be clearly separated by

different phases (i.e., angles). However, it remains essential to

accurately assign the states to each cluster for phase extraction.

To this end, we introduce a reference state, which is derived

from PHY samples collected in T1 duration in the same

inventory round, as shown in Fig. 2b. This is because PHY

samples in T1 characterize CW patterns that are similar to the

absorbing pattern in RN16, which can be directly obtained

in each inventory round. Luckily, in the EPC Gen2 protocol,

the minimal length of T1 is defined as 268μs [8], which

yields a sufficient number of samples (i.e., approximately 268
at a 1MHz sampling rate) and is easy to segment from an

inventory round.
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(a) Activity phase. (b) IQ plot of activity.

Fig. 5: Environmental interference removal.

Therefore, we simultaneously project these T1 PHY samples

and those from two states in the same inventory into the same

IQ plot, as depicted in Fig. 4c. Due to the similar pattern in T1

and absorb state in RN16, the reference cluster (i.e., the green

cluster) closely overlaps with the RN16 absorb state. More

importantly, the reference cluster is clearly isolated from the

reflect state due to different phases. Thus, the cluster center

closer in Euclidean distance to the reference state can be

identified as the absorb state, while the other cluster indicates

the reflect state. By doing so, two states of tag can be distinctly

differentiated for phase extraction, even when they share the

same amplitude in PHY samples.

C. Elimination of Environmental Interference

After differentiating two states, we can now continuously

measure the phase inventory by inventory, calculating the

relative angle between two clusters to infer human activities.

Fig. 5a shows the measured phase when a user repeats standing

up for a while followed by sitting down for a while twice. The

phase waveform slightly fluctuates when the user performs

activities while remaining stable when the user keeps static,

as depicted by the blue line. Such a small fluctuation in phase

sometimes becomes even undetectable due to strong static

reflection from the environment (e.g., the red line in Fig. 5b),

resulting in an extremely small phase (i.e., Δθ in Fig. 5b).

Current studies eliminate the static component and extract

dynamic component by estimating the center of the superim-

posed backscattered signals using circle fitting methods. The

vector between the origin and the estimated center is regarded

as the static component. This is because commercial RFID

readers only output the phase of superimposed backscattered

signal, without providing access to the PHY data. However,

this method is effective only under the assumption that the

superimposed signal forms an arc of a standard circle, which,

however, is difficult to guarantee in practice. We plot the

estimated static component derived from circle fitting and the

actual static component extracted from PHY samples without

human activity in Fig. 5b. The estimated static component

significantly deviates from the one that is actually measured in

both amplitude and phase, indicating that using the estimated

static component may yield inaccurate phase information.

In our work, LoDiHAR employs a low-cost and distributed

RF sensing system, which supports full access to the PHY

samples of the backscattered signals. In another word, we
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Fig. 6: Distributed sensing infrastructure.

(a) Data alignment. (b) Data interpolation.

Fig. 7: Temporal synchronization in phase fusion.

can directly obtain the raw PHY samples of the entire com-

munication, involving the static component. In specific, we

measure the static component by averaging a certain period of

PHY samples in the absence of human activity, then perform

vector subtraction to remove it from the PHY samples when

performing activity. By doing so, the static reflection from the

environment can be successfully canceled out, only remaining

the phase induced by human activities.

The green curve in Fig. 5a illustrates the signal phase after

applying our interference elimination method. The phase fluc-

tuation significantly increases from 0.5 radians to 3.1 radians

when only dynamic component is extracted, demonstrating a

successful environmental interference mitigation. In addition,

considering the environmental variations, we ensure timely

updates of the static component by acquiring CW signals close

to the tag backscattered signal in the same inventory round.

D. Distributed Phase Fusion

Implementing distributed sensing for HAR offers the poten-

tial to profile human activities with more reliable information.

However, COTS RFID systems apply a polling interrogation

scheme for multiple receivers such that only a single receiver

is permitted to receive the backscattered signal at any given

time slot. While this polling scheme effectively avoids com-

munication collision, it results in inefficient data collection,

particularly for tasks involving time series data, such as HAR.

To effectively capture reliable phase features incurred by

human activities, we fully exploit the distributed characteristics

of the employed low-cost sensing system. Specifically, we

can deploy one transmitter to communicate with the tag and

multiple receivers to concurrently receive the tag backscattered

signal thanks to the decoupled functionalities of a duplex

communication scheme, as shown in Fig. 6. As such, the tag

backscattered signals can be received by each receiver in a

parallel manner, which potentially provides richer information

than polling communication scheme.

An intuitive data fusion method involving summing up the

measured phase from all receivers when performing activi-

ties. However, simply adding multiple phases from different

receivers is inherently difficult in distributed systems for

two primary reasons. First, the propagation distance of the

backscattered signal received by each receiver is distinct,

particularly in reflections from the human body, resulting

in temporal asynchronization of phase sequences extracted

from each receiver. Second, variations in propagation distance

incur different phase information for each receiver, leading to

spatially asynchronous phase values for the same activity.

To address temporal asynchronization, we begin by connect-

ing all receivers to a central hub, allowing us to configure the

receiver such that all receivers start to sniff the communication

channel at exactly the same time. We record the time stamp

of the received backscattered signal for each receiver at a

sampling rate of 1M/s and segment the phase sequence based

on the timestamp when performing activities. Typically, we

measure a single phase value for each inventory round, where

the first point of RN16 serves as the timestamp of this phase

value. Next, we identify the latest timestamp at the beginning

of all phase sequences and the earliest timestamp at the end

of these sequences to establish the start and end points of the

recorded activity. Fig. 7a shows the aligned phase sequence

for a fall activity collected by four receivers in parallel. For

this particular fall activity, timestamps of 0.061s and 1.135s

are selected as the start and end points, respectively.

However, phase sequences from all receivers are still asyn-

chronous due to the multipath of the backscattered signals. To

further align the phase values corresponding to each times-

tamp, we employ linear interpolation to supplement the phase

sequences across all receivers to the same length. Specifically,

in Fig. 7b, when a phase value for a given antenna is missing

at a particular timestamp (i.e., the phase value at 0.536s

for Data2), we supplement this missing phase value through

linear interpolation between the two adjacent phase values

(i.e., 0.511s and 0.561s). By iteratively applying this method

across all sequences, we can achieve strict synchronization of

the phase sequences for all receivers, ensuring that they are

aligned across all timestamps.

To tackle spatial asynchronization induced by differ-

ent phase variations among receivers, we fuse the time-

synchronized phase sequences from all receivers by perform-

ing a weighted sum strategy. Our intuition is that the signal

phase is linearly correlated with the propagation distance of the

backscattered signals. As such, a phase waveform exhibiting

more pronounced variations can be assigned to a higher

weight, thereby highlighting its characteristics of human ac-

tivity. In contrast, a lower weight is assigned to the waveform

characterized by lower amplitude fluctuations. The assigned

weight can be calculated as Wi = Ai/
∑n

i=1 Ai, where Wi

represents the weight assigned to each receiver, Ai denotes the

difference between max and min phase for receiver i, and n is

the total number of receivers. Therefore, the weighted phase

sequence can be expressed as A =
∑n

i=1 Wi × θi, where θi
is the phase for receiver i.
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Fig. 8: Spatial synchronization in phase fusion.

Fig. 9: CGAN model.

Fig. 8 depicts the results of our data fusion for a particular

fall activity. We measure the correlation between the fused

phase sequence and the one from each receiver. The average

similarity exceeds 0.89, proving that the fused phase sequence

retains the information from each receiver. By employing the

weighted sum strategy, we can effectively integrate the phase

features across all receivers, allowing for a more significant

representation of the phase sequence and providing more

reliable data for HAR.

E. Data Augmentation
In HAR tasks, a straightforward method to acquire train-

ing data involves manually collecting a sufficient amount of

activity data, which covers as much diversity of activities as

possible. However, such a burdensome data collection process

is hard, or even impossible, to conduct in practice. Inspired

by the effectiveness of the Time Series Data Augmentation

approach [10], we design a CGAN model based on LSTM

network to automatically generate activity-related phase se-

quences, as shown in Fig. 9. In our HAR scenario, the Gen-

erator and Discriminator fulfill complementary roles, where

the Generator responses for producing synthetic time series

phase sequences that aim to be indistinguishable from real-

world measurements, while the Discriminator evaluates the

authenticity of the presented phase sequences. This adversarial

process facilitates the Generator to iteratively enhance its

outputs until the Discriminator is unable to reliably identify

the source of the phase sequences.

The Generator in the CGAN for LoDiHAR incorporates

an LSTM unit with 64 hidden units, coupled with an MLP

consisting of 6 layers. Furthermore, the discriminator is de-

signed with a bidirectional LSTM that adeptly captures the

impact of both preceding and subsequent states on the current

state within time-series phase sequences, complemented by an

MLP consists of 5 layers. Finally, we employ a transformer

model, which manifests superior performance in time series

classification, as our classifier to effectively distinguish among

eight types of activities.

6m

3m

(a) Room1.

7m

4m

(b) Room2.

9m

9m

(c) Room3.

Fig. 10: Three different rooms.

Fig. 11: The experiment setup.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Setup.

1) Hardware: The experiment setup is illustrated in Fig.

11. LoDiHAR applies an Arduino Uno R3 board to control

the RFM69HW chip, enabling the emission of CW and Query
command at a carrier frequency of 915MHz to illuminate and

communicate with RFID tag. Unlike the system implementa-

tion presented in [32], we enhance the low-cost RF sensing

system by integrating all components onto a single PCB

board for higher system stability. Four identical commodity

RTL-SDR dongles equipped with an RTL2832 ADC chip are

employed as the receiver. All receivers are connected to a

central hub for synchronization. Signal reception is configured

using GnuRadio, which captures backscattered signals from

the tags at a sampling rate of 1M/s, outputting complex values

of the PHY samples.

2) Data collection and Model Training: We invite eight

volunteers (five males and three females) to radomly perform

eight types of activities across three rooms with varying sizes

and layouts. The dimensions of these rooms are 6 m × 3 m ×

3 m, 7 m × 4 m × 3 m and 9 m × 9 m × 3 m, respectively,

as depicted in the Fig. 10. Each activity is performed 300
times with different speeds and distances, resulting in a total

of 57600 phase sequences. To augment the collected dataset,

we apply a data augmentation factor of 25× to enhance the

dataset using our designed CGAN model.

We use Matlab to extract phase information from the tag

backscattered signals. The training and testing of both CGAN

and the HAR classifier are conducted using Pytorch on a

PC server equipped with 32 GB of RAM, an Intel Core

i7-13700K CPU from the 13th Generation lineup, and an

NVIDIA GeForce RTX 4070 GPU. The dataset is carefully

partitioned into three subsets for model evaluation: 80% for
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Fig. 14: Performance on EIM.

training to capture underlying data patterns, 10% for testing

to assess model accuracy on new data, and 10% for validation

to fine-tune hyper-parameters and prevent overfitting.

B. Evaluation
1) Overall system performance: Fig. 12 illustrates the con-

fusion matrix that demonstrates the overall performance of

LoDiHAR across all eight activities and various environments.

For this evaluation, we utilize a hybrid dataset including both

real collected and augmented data during training and testing.

LoDiHar achieves an average recognition accuracy of 94.9%,

with the accuracy for each individual activity exceeding 92.0%
across diverse experiment settings. Our holistic design of

LoDiHAR not only ensures cost-effectiveness and robustness

but also delivers high accuracy in recognizing human activi-

ties, offering a significant potential to broaden the applicability

of RFID-based HAR systems.

2) Comparison with COTS RFID reader: We evaluate the

performance of LoDiHAR in comparison to the mainstream

Impinj Speedway R420 reader, connecting four antennas to the

Impinj reader and performing the same data fusion method and

data augmentation strategy used in our study. The experiments

are conducted in a single room, ensuring other experiment

settings remain the same. The experiment result are shown in

Fig. 13. LoDiHAR achieves an average precision of 94.9% in

identifying various human activities, which outperforms that

of the Impinj R420 reader. Such a superior performance owns

to the distributed system design and our comprehensive data

fusion approach, effectively maintaining a high read rate with

an increased number of antennas while ensuring reliable phase

information. In contrast, Impinj R420 operates on a polling

communication scheme, which inherently limits the amount

of information for HAR.

3) Performance on environmental interference mitigation:
To validate the effectiveness of our environmental interference

mitigation (EIM) method, we compared the performance of

LoDiHAR before and after applying the interference elimi-

nation algorithm. Throughout the experiments, all other ex-

perimental settings are kept constant. Receivers are deployed

in three different rooms at a distance of over 2 meters from

the tag and the volunteers are allowed to perform activities in

random speeds and distances. Fig. 14 depicts that the system

performance manifests a substantial enhancement of 28%
when employing our environmental interference mitigation

algorithm, rising from 66% to 94%, thereby demonstrating

the efficacy of our EIM approach.

4) Performance on different numbers of receivers: To eval-

uate the effectiveness of LoDiHAR in recognizing human

activities using multiple receivers, we conduct an experiment

with an increasing number of receivers. During this exper-

iment, we maintained a constant experiment settings across

different rooms, while only varying the number of receivers.

Fig. 15 presents the results of the experiment. As the number

of receivers increases from 1 to 4, the performance of LoDi-

HAR correspondingly improves from 90% to 94.9%. This

experiment result validates that the use of multiple receivers

enhances the system’s ability to capture rich information about

human activities, thereby improving the effectiveness of HAR.

Importantly, LoDiHAR can flexibly add more receivers thanks

to its distributed architecture, which provides a potential for

HAR in more challenging environments.

5) Performance on Data Augmentation: In this evaluation,

we test the impact of varying data augmentation factors on

LoDiHAR to verify the effectiveness of our CGAN model.

We employ the F1 score as our evaluation metric, as it is a

comprehensive indicator that takes into account both precision

and recall. We vary the augmentation factor from 1× to 35×
applied to our collected phase sequences while keeping all

other experiment settings the same. As shown in Fig. 16,

the performance of LoDiHAR significantly improves in accor-

dance with the elevated augmentation factors. However, when

the augmentation factor exceeds 25×, the system performance

slightly degrades since the augmented data at higher factors

is prone to cause overfitting problem. Therefore, we adopt

augmentation factors of 25× for model training.

6) Performance on Different Environments: In this evalu-

ation, we conduct experiments across three different rooms

with different sizes and layouts. For each room, we collect

and augment the phase sequences to train a model, while

applying this model to test the phase sequences collected

from the other two rooms. As the experiment results depicted

in Fig. 17, LoDiHAR still achieves an average precision of

90% for HAR, even when the model had not been trained

in the unseen environments. The model trained in the room1

achieves the best performance due to its relatively simple

layout, resulting in less multipath and more reliable collected

phase information.

7) Performance on Different Distances: We evaluate LoDi-

HAR for identifying all eight activities performed at varying

distances from the receivers. In this evaluation, we maintain a

constant distance between the transmitter and tag to guarantee
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the activation of the tag while varying the distance between

receivers and tag. Each activity is repeated 300 times in room3.

At each distance, a data augmentation factor of 25× is applied

to the collected phase sequences. As shown in Fig. 18, the

performance of LoDiHAR slightly decreases from 94% to

92% across all distances. The precision at a distance of 3m

still achieves 92%, demonstrating the significant robustness of

our LoDiHAR system. Note that the distance could be further

enhanced by adding an RF amplifier for the receive antennas.

V. RELATED WORK

A. Wearable Device Based HAR

Wearable sensors have been widely applied in HAR due

to their capability to monitor the physiological parameters

of the human body [14], [16], [23], [28]. A Fall Detection

System is explored using the frequency of the inertial sensor

across various datasets, demonstrating the effectiveness of

deep neural networks for HAR [23]. Salient features from

sensor data are extracted via Gaussian kernel-based principal

component analysis and Z-score normalization, followed by

training a deep CNN for HAR [28]. However, wearable device

based methods encounter limitations in real-time transmission

of raw inertial signals from wearable devices to servers due

to high sampling rates and unstable communication networks.

Crucial fall features in the inertial signal are used to achieve

high fall detection accuracy with reduced data, thereby im-

proving real-time performance [16]. However, the requirement

for continuous wearing of the devices and persistent network

connectivity pose burdensome for users [14].

B. Vision Based HAR

The combination of cameras with advanced deep learn-

ing technologies has significantly enhanced HAR in recent

decades, enabling contact-free HAR [11], [13], [19], [21],

[26]. ActivityNet provided an initial overview of vision-based

HAR, focusing on conventional image processing methods

[13]. Poppe [19] highlights the shift from traditional feature

extraction to using Convolutional Neural Networks for com-

plex activity recognition. UESTC-MMEA-CL [11] combines

LSTM networks with CNN to capture temporal information

of activities in videos. OFF [26] tackles real-time HAR,

proposing a dual-stream CNN architecture that efficiently pro-

cesses spatial and temporal data, enhancing real-time activity

recognition. However, vision-based approaches are restricted

by their reliance on good lighting conditions. Furthermore,

they are prone to raise privacy concerns [21].

C. Acoustic Based HAR

The pervasive application of speakers and microphones

embedded in smart devices has greatly facilitated acoustic-

based HAR [3], [22], [25], [27], [29], [33]. RobuCIR enables

identifying 15 gestures by extracting the channel impulse

response of the acoustic signals [33], effectively recognizing

gestures with varying duration, speed, and range. Vskin [25]

achieves a more fine-grained hand motion recognition on the

back surface of mobile devices when holding the devices by

measuring multiple fingers’ movement. Those works, however,

can merely identify human motions in near-field scenarios (i.e.,

≤ 1m) by intentionally discarding the far-field interference.

RemoteGesture [27] extends the acoustic sensing range by

correlating the length of the transmitted signal with the sensing

distances. However, acoustic-based solutions are constrained

by the narrow bandwidth and rapid signal attenuation for far-

field HAR.

D. RF Based HAR

RF sensing technology has become increasingly popular

in human activity recognition due to the fact that human

motion influences the propagation of RF signals, affecting

both signal strength and phase [4], [5], [17], [31], [34], [35].

WiFall [34] successfully implemented HAR using WiFi by

utilizing the amplitude and phase of channel state information

(CSI). RTFall [31] demonstrated the capability of applying

WiFi routers to detect human falls. However, extracting CSI

on limited hardware and relatively low recognition resolution

in WiFi signals limit its widespread application. A novel dy-

namic range-Doppler trajectory (DRDT) method based on the

FMCW radar system is proposed to achieve fine-grained HAR

[17], as FMCW radar operates with a wider frequency band-

width. Nevertheless, FMCW-based method entails specialized

high-end devices, which are expensive and hard for pervasive

use. TACT [35] achieves accurate HAR recognition of eight

activities through COTS RFID system. Yet, the relatively high

cost of RFID readers and the polling mechanism in multi-

antenna modes hinder its large-scale deployment. In contrast

to these approaches, LoDiHAR is superior in achieving cost-

effective and distributed RF sensing for HAR.

VI. CONCLUSION

This study proposes LoDiHAR, a cost-effective and dis-

tributed sensing system for HAR based on RFID technology.

LoDiHAR entirely consists of low-cost general-purpose RF

modules and provides full access to the PHY samples of
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the backscattered signals. LoDiHAR first extracts phase in-

formation by accurately differentiating the reflect and absorb

states in the backscattered signals. Then a comprehensive data

fusion method is designed to integrate the extracted phase from

distributed receivers, yielding a reliable phase sequence for

HAR. Finally, LoDiHAR automatically generates a sufficient

amount of training data from a limited number of collected

data by employing a deep learning framework, effectively

capturing the human activity diversity across different users.

Extensive experiments demonstrate that LoDiHAR achieves

an overall accuracy of 94.9% across various settings and

environments.
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