3274

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

MULSAM: Multidimensional Attention With
Hardware Acceleration for Efficient Intrusion
Detection on Vehicular CAN Bus

He Xu
Haibo Zeng

, Xiaokang Shi
, Member, IEEE, Renfa Li

Abstract—Controller area network (CAN) protocol is an effi-
cient standard enabling communication among electronic control
units (ECUs). However, the CAN bus is vulnerable to malicious
attacks because of a lack of defense features. In this article,
a novel vehicle intrusion detection system (IDS) is developed.
The challenge is that existing techniques of IDSs rarely consider
attacks with small-batch, which are characterized by their small
attack scale and concealed attack patterns, posing a significant
threat to driving safety. To solve this problem, we developed
an algorithm model that merges multidimensional long short-
term memory (MD-LSTM) and self-attention mechanism (SAM),
shortly named MULSAM. The MULSAM model was compared
with other baseline models, including stacked long short-term
memory (LSTM), MD-LSTM, etc. Experiments show that our
approach has the best-detection accuracy (98.98%) and training
stability. Further, to speed up the inference of MULSAM on
edge, the hardware accelerator is implemented on FPGA devices
using technologies, such as parallelization, modular, pipeline,
and fixed-point quantization. Experiments show that our FPGA-
based acceleration scheme has a better-energy efficiency than the
CPU platform. Even with a certain degree of quantification, the
acceleration model for MULSAM still displays a high-detection
accuracy of 98.81% and a low latency of 1.88 ms.

Index Terms—Abnormal detection, controller area network
(CAN), FPGA, multidimensional long short-term memory
(LSTM), self-attention mechanism (SAM).

Received 7 May 2024; revised 6 December 2024; accepted 2 February 2025.
Date of publication 12 February 2025; date of current version 22 August 2025.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61932010 and Grant 61972145; in part by the
Science and Technology Innovation Program of Hunan Province under Grant
2024RC3105; and in part by the Shenzhen Science and Technology Program
under Grant JCYJ20240813162405008. This article was recommended by
Associate Editor Y. Jin. (He Xu and Xiaokang Shi contributed equally to this
work.) (Corresponding authors: Di Wu; Yanwen Wang; Jiwu Lu.)

He Xu, Hansheng Liu, Jiwu Lu, and Di Wu are with the
National Engineering Research Center for Robot Visual Perception and
Control Technology, Hunan University, Changsha 410082, Hunan, China
(e-mail: xuhe@hnu.edu.cn; 7415663988 @hnu.edu.cn; jiwulu@hnu.edu.cn;
dwu@hnu.edu.cn).

Xiaokang Shi and Yanwen Wang are with the College of Electrical and
Information Engineering, Hunan University, Changsha 410082, Hunan, China,
and also with Shenzhen Research Institute, Hunan University, Shenzhen
518000, China (e-mail: shixiaokang2022 @hnu.edu.cn; wangyw @hnu.edu.cn).

Haibo Zeng is with the Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061 USA (e-mail: hbzeng@vt.edu).

Renfa Li is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha 410082, Hunan, China (e-mail:
lirenfa@hnu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2025.3541566

, Hansheng Liu, Yanwen Wang
, Senior Member, IEEE, and Di Wu

, Member, IEEE, Jiwu Lu“, Member, IEEE,
, Member, IEEE

I. INTRODUCTION

ONTROLLER area network (CAN) bus protocol has

been widely used in industrial automation control due
to its low cost, high reliability, real-time, and robust anti-
interference ability [1]. In effect, the CAN bus has become
a communication standard in the automotive field [2]. The
electronic control units (ECUs) perform identity authentication
through the CAN ID of the CAN data frame on the CAN
bus [3]. The majority of ECUs in vehicles are interconnected
via the CAN bus for data exchange, including common types
of in-vehicle communication networks, such as the engine
control module (ECM), transmission control module (TCM),
and body control module (BCM). Therefore, CAN commu-
nication protocol has become one of the most promising
and widely used network technologies in automotive systems
thanks to its high reliability, real-time performance, and low-
cost properties. However, CAN ID can be arbitrarily modified,
which allows intruders to attack the network [4]. For example,
the intruder can launch a DoS attack to preempt the data
transmission window time of the CAN network, making other
legitimate ECUs fail to work continuously and may even
result in the bus-off, which refers to a specific error state
indicating that a node has been forced to disconnect from
the CAN bus due to detecting an excessive number of errors
in the CAN network. Moreover, small-scale attacks, such as
replay and delete attacks, do not require frequent injections to
attack [5], [6]. Under such attacks, the distribution of CAN
IDs is similar to that of normal CAN IDs, making them
difficult to detect and potentially posing greater risks that
could lead to more severe consequences. For example, an
attacker could use a replay attack to resend modified speeds,
causing a vehicle to operate at unsafe speeds and disrupting
normal driving. Alternatively, a delete attack could prevent a
specific ECU unit from transmitting data to the CAN network,
resulting in accidents or other safety issues. In short, due to
the communication characteristics of the CAN protocol, the
CAN bus network has inevitable safety hazards, such as illegal
control, data leakage, and so on.

A. Motivations

Intrusion detection technology is widely used on the in-
vehicle CAN bus. In recent years, with the growth of
intelligent connected vehicles (ICVs) [7], more and more

1937-4151 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

e htt

Authorized licensed use limited to: HUNAIR UNIVERSITY oaded on

s://www.ieee, og/am lications/rights/index.htm] for more informatjon.

vember 03,2025 at 06:11:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3853-4863
https://orcid.org/0009-0007-7983-8381
https://orcid.org/0000-0002-8754-4355
https://orcid.org/0000-0002-7563-5698
https://orcid.org/0000-0003-1162-759X
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0001-8697-1817

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

attacks are targeting the in-vehicle system, especially the
elaborate-designed attacks with small-batch characteristics
that are extremely deceptive and destructive. However, few
researchers have designed deep learning models for attacks
with small-batch characteristics and practical deployment
on embedded systems. Inspired by the multidimensions
of RoseTTAFold [8], which has excellent performance on
protein structure prediction, multidimensional means are
used to design our intrusion detection system (IDS) based
on multidimensional long short-term memory (MD-LSTM),
which can deploy long short-term memory (LSTM) cells along
any or all of the dimensions.

To deploy our model on the feasible FPGA platform, our
IDS is specially designed and created in two dimensions [9].
At the same time, to compensate for the loss caused by
the reduction of dimensions, the fusion of the self-attention
mechanism (SAM) [10] is utilized to improve the detection
performance. The MD-LSTM with SAM, called MULSAM,
can learn multidimensional features of CAN time-series data,
providing agile and stable processing at the CAN bus network
edge. Due to the effect of the self-attention mechanism,
MULSAM can better-separate data, which has more complex
features and more separated interdependencies than standard
MD-LSTM networks.

B. Challenges

With the unceasing improvement of the automotive intel-
ligence level, the number of in-vehicle network ECUs
has been gradually increasing, which makes the in-vehicle
network more complex. Unfortunately, the CAN bus lacks
an effective security mechanism to resist external intrusion
attacks [11], [12]. The exposed interfaces, such as GPS,
V2V, 4G/5G, and so on, have imported many unpredictable
security threats to the automobile [13], [14]. Also, with the
wireless V2X connection, attackers have more opportunities
to access the vehicle network to obtain vehicle information
and even remotely control the vehicle. The original built-
in safety mechanism of the CAN bus is mainly to ensure
reliable communication. However, intrusion attacks on the
CAN bus now can cause malfunction, jam, and data tampering
of the vehicle network communication. These eventually cause
abnormal vehicle driving conditions, which endangers the
safety of vehicles and drivers. It may also involve personal
privacy data leakage problems and lead to property damage.
Therefore, the security defense methods of communication
systems are becoming more and more critical.

Today, the CAN bus protocol plays an essential role in
the in-vehicle electronic system. Any abnormal information
transmission caused by intrusion attacks may cause abnormal
working status and endanger the vehicle’s safe driving, causing
unpredictable loss and damage. Therefore, detecting abnormal
data transmission quickly and efficiently on the CAN bus in
ICVs is crucial and important [15]. Through the intrusion
detecting technology, the vehicle generates an alarm message
and switches into a safe protection mode [16]. However,
the widely used automotive embedded systems have limited
hardware computing resources due to cost constraints. If the

3275

IDS is directly deployed into the in-vehicle system, it will have
a performance tradeoff on the vehicle system itself. Therefore,
most researchers plug IDS hardware externally onto the CAN
bus network and conduct intrusion detection experiments by
monitoring CAN bus data transmission messages [17], [18].
The advantage of this method is that no change in the hardware
architecture is needed. However, to ensure the safety of vehi-
cles, IDSs are compulsory to be real-time and efficient, which
is difficult for the existing automotive embedded system.
Therefore, although challenging, it is worthwhile to implement
an IDS in the vehicle, where there are few related studies as
far as we know.

C. Our Contributions

In this work, a compact, novel deep learning model is
proposed, which is based on the MD-LSTM network with a
self-attention layer, aiming to improve the performance of IDS
under multiple different attacks on the vehicle’s CAN bus. At
the same time, the model reconstruction and FPGA-embedded
platform implementation scheme are explored in this article.
An efficient and practical solution is provided for designing
IDSs in ICVs.

Our critical contributions are summarized as follows.

1) We use the attack-free data from an actual car running
on the road, but there is a lack of real-world data for
attacks. To address this challenge, we build a simulation
system to generate attack datasets, including those for
DoS, fuzzy, spoofing, replay, and delete attacks. The
design of the simulation system is based on analyzing
the CAN ID distribution of these common attack types.
Our observation is that the time-series data of CAN
message IDs is correlated to the function of the in-
vehicle system. For example, after an ECU sends a
message over the CAN network, the receiving ECU will
only be able to process and possibly respond by sending
another message (with a different ID) after a certain
amount of delay. Usually, this dependency makes the
distribution of CAN IDs in a relatively stable state.

2) The MULSAM is developed to analyze large volumes of
real-time CAN data and optimize network performance.
The multidimensional and SAMs are adopted to make
the MULSAM tiny and parallel, which is suitable for
deployment on an FPGA-embedded device. The role
of the self-attention layer is to convert the input data
into an intermediate semantic representation, making
its characteristic information more evident and easy
to distinguish, which can be regarded as an encoding
process. It can enhance MD-LSTM cells’ depth and
temporal computation, which is capable of processing
multidimensional CAN data with attack features. The
safety of networked systems can be improved by real-time,
efficient processing at the edge device in the vehicle. New
IDS based on the data flow and learning driven paradigm
can perform better by harnessing the real-time CAN data.

3) The Stacked LSTM, MD-LSTM, and our MULSAM
model are designed and implemented on the
FPGA-embedded device (Ultra96-V2 board). The

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3276

FPGA-embedded platform, which has the advantage of
parallel processing and the ability to customize hardware
algorithms, can quickly and flexibly implement our
deep learning model. It is appropriate for application
scenarios that require high-real-time performance. In
this article, the matrix multiplication operation of the
dynamic matrix is presented for the SAM computation
to improve the internal throughput of the MULSAM
model. A data flow-based design paradigm is also
provided for the FPGA-based implementation of the
MD-LSTM cell. Experiments show that FPGA-based
MULSAM has a higher-energy efficiency than the CPU
platform. Compared with other LSTM-related deep
learning models, it also has a higher-detection accuracy
and lower latency.

II. RELATED WORKS

From the perspective of detection approaches, the design
of IDS can be divided into rule-based and machine learning
(ML)-based categories.

A. Rule-Based IDS

The rule-based IDS is a simple system, which uses some
internal logic relationships of CAN data to perform anomaly
analysis. For instance, Hoppe et al. [19] studied the regularity
of data sent by a specific ECU in the CAN bus and proposed
an IDS based on the strategy of abnormal signals. However,
this method has great limitations and poor flexibility because
it needs to study the data characteristics of the ECUs in depth.
Vuong et al. [20] designed an attack detection method based
on decision trees for cyber—physical systems and evaluated
the model against various scenarios involving DoS, command
injection, and two malware attacks. However, the proposed
method approximately has a detection latency of s, which is
too large for ICVs. Ling and Feng [21] combined the CAN
IDs with their occurrence frequency and counted the number of
CAN messages that belong to the given CAN ID for detecting
malicious CAN messages. Although it is simple, the proposed
algorithm has limited capability to detect attacks with small-
batch. Cho and Shin [22] extracted and estimated transmitters
clock skews, which are fingerprints of transmitters’ ECUs,
to solve the linear parameter identification problem in IDS.
However, this method can detect attacks only for periodic
messages and the attacker can manipulate the frame data to
bypass it [23].

With the increasing complexity of vehicular functions, the
number of ECUs has gradually increased, and the in-vehicle
communication network has become more complex and volatile.
It is hard to meet the development of communication security
in the automotive by decision making with simple rules.

B. Machine Learning-Based IDS

The ML-based IDS is able to process more complex data
with multidimensional features, but it is also harder to train
than rule-based IDS besides posing higher-deployment cost.
BTMonitor [24] extracted nine essential features in the time
and frequency domain as the fingerprint features of ECUs

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

and completed classification tasks to identify intrusive ECUs
through the multilayer perceptron (MLP). VoltageIDS [23]
extracted the essential features from the message signal and
used the multiclass classifier to classify the CAN ID of the
message. It also can distinguish between errors and bus-off
attacks. Unfortunately, for both BTMonitor and VoltagelDS,
the temperature and the electromagnetic environment signifi-
cantly influence the detection accuracy. CANet [17] proposed
an unsupervised learning approach that combined LSTM
and autoencoder to train the time series of CAN messages.
However, the independent LSTM input model for each ID in
CANet is complicated and hard to deploy in the in-vehicle
system. Hossain et al. [18] generated three attack datasets
based on the attack-free traffic from a real car, and proposed an
LSTM-based IDS to detect and mitigate the CAN bus network
attacks, including DoS, fuzzy, and spoofing attacks, but did not
consider the delete attack that disables a vehicular function,
which is common in vehicle bus-attack.

Since the vehicular electronic system is in a mobile
state during driving, the power consumption and the detec-
tion of small-batch attacks are vital issues for ML-based
IDS. Unfortunately, there are few related works exploring
embedded implementation and addressing small-batch attacks.
Correspondingly, we present an enhanced ML-based IDS with
efficient design and implementation on the FPGA platform for
the actual vehicular system.

III. BACKGROUND
A. Self-Attention Mechanism

The SAM is an advanced technique designed for modeling
intricate interdependencies among elements in sequential data.
Its core principle involves treating each element of the input
sequence as a query (Q), a key (K), or a value (V), facilitating
an in-depth computation of similarity between queries and
keys, which translates into significance scores for interrelations
within the sequence. Subsequently, these scores are weighted
and aggregated as the output.

The operation steps start with the computation of queries,
keys, and values for each element within the input sequence
through linear transformations of the input data, followed by
partitioning into numerous ‘heads’ for parallel computing.
Attention scores are then derived by evaluating the simi-
larity (e.g., via dot products or other similarity measures)
between each query and all corresponding keys across the
sequence, thus yielding a matrix of attention scores that
highlight the relative importance of sequence positions about
one another. By applying a softmax normalization to the
attention scores, one obtains a set of attention weights that
embody a probabilistic distribution reflecting the weighted
significance across the sequence. Finally, attention weights
are used for a weighted summation to achieve a final output
that integrates the influence of all sequence positions. This
weighted summation ensures that the output represents a
dynamic, contextually informed weighted mean of the values,
optimized by the attention mechanism.

The SAM is superior in its ability to directly cap-
ture long-distance dependencies within a sequence without

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

Comv(X) B
= transpose
L] attention maps

| |
Conv(X) E
n

i

K

1x1 kernel
r

Conv()

feature maps (X)

1x1 kernel

i
1
CAN ID feature vector 1
1
1

! Comv(4)
® e

1x1 kernel

3277

self-attention
feature maps (X')
_—

Softmax

W

FC layer

‘\” e) e -

I g}

i
i
i
l

i
A
4
i
i
i
i
i
i
i
i

Fig. 1. Architecture of MULSAM.

any dependence on recursive or convolutional architectures,
achieving impressive results in processing sequence data, such
as natural language data.

B. MD-LSTM

MD-LSTM is an enhanced LSTM model, primarily improv-
ing the performance of LSTM by innovatively incorporating a
multiscale mechanism. This advanced design allows the model
to adeptly handle informational variations spanning a diverse
array of temporal scales, thereby significantly improving its
proficiency in capturing long-term dependencies contained
within sequential datasets.

MD-LSTM introduces two pivotal concepts: 1) multiple-
dilation and 2) multiple-layer configurations. The
multiple-dilation involves a composite of several LSTM units
each with distinct dilation coefficients, comprising a multiple-
dilation network architecture. The dilation coefficient of each
LSTM unit dictates the temporal stride spanned across the
sequence. A larger coefficient enables the unit to capture
more extended long-term dependencies. Multiple-layer in MD-
LSTM typically refers to the stacking of several multiscale
LSTM layers, which serves to enhance the deep representation
capability of the model. Such a layered configuration allows
the model to encapsulate features across various degrees of
abstraction within the sequential data.

Training of the MD-LSTM follows procedures similar to
the LSTM model, employing optimization methodologies like
backpropagation and stochastic gradient descent for end-to-
end training. MD-LSTM has manifested outstanding outcomes
in various fields, including video analysis and natural language
processing, particularly superior in processing long sequence
data and capturing long-term dependencies within sequences.

V. OVERVIEW OF MULSAM SYSTEM

Given the advantage of LSTM to track temporal depen-
dencies, a tiny, novel system is proposed, which adapts its

\/

benefits and extends its structure by MD-LSTM specifically
to process the CAN time-series data. Moreover, a SAM is
added to strengthen the correlation between time series data.
As shown in Fig. 1, the input data is first transformed into the
processed data after the self-attention layer in the proposed
system. Then the processed data is transmitted to MD-LSTM
in time steps to obtain the output of hidden layers in two
dimensions. Third, the outputs of MD-LSTM are concatenated
to fuse distinct features of different dimensions. Finally, the
classification result is obtained through a fully connected layer
and the Softmax activation function.

From Fig. 1, it is essential to notice that the MULSAM
proposed in this article utilizes the SAM to make up for the
loss caused by reducing the dimension of the MD-LSTM.
Thus, MULSAM can more effectively process the time series
of CAN data with multidimensional features. Therefore, for
anomaly detection in the CAN bus network, the accuracy of
the MULSAM model is consistently better than other ML
models.

V. ATTACK MODEL AND DATASETS

This article focuses on five types of attacks: DoS, fuzzy,
spoofing, replay, and delete. The DoS, fuzzy, and spoofing
attacks have the characteristic of flooding injection, while
replay and delete attacks have the attribute of small-batch.
Compared to flooding attacks, small-batch attacks have much
less impact on the network payload and are much harder to
detect.

DoS Attack: Once attackers invade the CAN bus network,
and will continue to send the highest-priority CAN data frame
to the CAN bus network, thus occupying the data transmission
time window of other normal ECUs. This results in the CAN
bus being in a congested state, which may cause the in-vehicle
system to be paralyzed, and endanger the safety of the vehicle.

Fuzzy Attack: The attackers can quickly launch the fuzzy
attack without knowing the specific information of the ECUs

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3278

Jaunch an attack? Y| inject attack frame inject normal frame J
messages and flags and flag
N]
read a frame, extract

. , . replay attack proce:
imestomp and CAN 1D (a) DoS, fuzzy, spoofing, replay attack process

CAN dataset -
mark the next frame to

Y
—+ delete the frame —»
clete the frame the flag of delete

the target CAN ID?
N inject the normal
data and flag,
and reset flag —|

(b) delete attack process

Fig. 2. Generate process of five attacks.

on the CAN bus of the vehicle system. The difference from
the DoS attack is that fuzzy attack injects randomness data.
Because of the randomness of CAN IDs and the characteristics
of mass injection, it has a certain probability of coinciding
with the ECU’ CAN ID existing in the vehicle network. In
this case, it will be possible to deceive the vehicle system.

Spoofing Attack: In a spoofing attack, an intruder listens to
the CAN bus but does not decipher the CAN bus function. It
eavesdrops on CAN messages and then injects many of the
same CAN data, which drives the ECUs to receive outdated
messages and misjudge.

Replay Attack: The intruder can listen to the CAN bus and
decipher the CAN signal, which enables more precise replay
attacks, such as accelerations or changes in driving direction.

Delete Attack: When an intruder invades the CAN bus
network, it may cause a legitimate, important ECU to lose the
function of sending data to the CAN bus network. In this case,
the CAN ID corresponding to the ECU will not appear in the
CAN bus network, which is called the delete attack.

A. Generation of Attack

This article uses the open-source CAN bus dataset from
the 4TU.ResearchData (an international data repository for
science, engineering, and design) [25]. The dataset was col-
lected from the actual car while driving. The five types of
attack CAN data are generated as shown in Fig. 2. Generating
attack data requires precise timing and selection of target
IDs to determine whether to launch a specific type of attack.
Specifically, for DoS, fuzzy, spoofing, and replay attacks,
attack intervals and the values of the target CAN IDs should
be preset before generating the attack data. Then the CAN data
from the original dataset are extracted, in which we use the
data’s timestamp along with the preset intervals to determine
when to initiate the attack. Once an attack is determined to
be launched, we inject the predetermined attack ID and mark
the status at the corresponding interval to simulate different
types of attacks. For delete attacks, we first set a target ID
value, then continually extract CAN data from the original
dataset. Next, we decide whether the current CAN ID is the
target ID for the attack. If it is the target ID, we delete the
current CAN ID and mark the next frame of the CAN message
as a delete attack marker, thereby simulating a delete attack.
Through the above attack methods, this article generates five
anomalous datasets with attack characteristics. Fig. 3 shows
the distribution of CAN ID characteristics in the normal state
and in five attack datasets.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

normal

] |
Wl
400

1500

% e
5000 A Ao LA At H A o
200010 100 200 300 400 500
1500

1600 fuzzy

500
a_ 0 <
2 5000, 0 100 200 300 400 500
z 2
si;gg spoofing . -
s A o A b
2000, 0 100 200 300 00 300
1500

1000 replay

20000 100 200 300 400 500

— delete
0
500(Ml Wi W‘/’m"r’W"\M/‘MJ\/‘,U'u/‘v”/\lm/ 'LWM'WJ' m",}L/ﬂ‘Wynrﬂ
0 100 200 300 400 500
Time step

Fig. 3. Distribution of attacks’ CAN ID.

From Fig. 3, the difference between the characteristics of
DoS, fuzzy, and spoofing attacks with the normal data state
can be seen clearly due to their flooding features. However,
the characteristics of replay and delete attacks are not evident,
which means that small-batch attacks is more difficult to
distinguish because it is similar to the benign state. The
experiment in Section VII also proves this assumption.

B. Preprocessing

The input data usually needs to be normalized to speed
up the training network fit in the deep learning training
progression. If the CAN ID is directly used as the input feature,
it will cause the accuracy of the input data to decrease because
the FPGA design needs to perform quantization processing. To
avoid this situation, we convert the CAN ID to the bit features
and use 0 or 1 as the input feature.

First, the original CAN ID is expressed in a hexadecimal
system, which occupies 2 bytes, where only the lower-11 bits
are valid. Equation (1) can calculate the 11-bit features in the
original CAN ID data

= {O, can_id & (1 << i) =0
;=

1, can_id & (1 <<i)>01€(0’1""’10) M

where can_id represents the original CAN ID, i represents the
bit position to be extracted, x; is the ith bit value, & represents
bitwise AND operation, and < < represents left shift operation.
By extracting the bit feature of the CAN ID as the input series,
normalizing the input value can be avoided. Since the input
value is only O or 1, we can use 1-bit data wide for storage
in an FPGA device, which can greatly reduce the resource
overhead without extra computing consumption.

The distribution characteristics after converting the CAN ID
integer into 11-bit data are shown in Fig. 4, where the x-axis
is the corresponding position of the bit, and the y-axis is the
corresponding time step.

VI. MULSAM DESIGN

This article proposes a MD-LSTM architecture with the
front SAM (MULSAM). The MULSAM model can be divided
into two primary parts, including a self-attention layer and
a MD-LSTM network. First, the self-attention layer, which
is widely used in the transformer model, is utilized to
enhance the correlation between the time-series data and easily

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

CAN ID bit
spoofing

S_onp00oS

20, 40 60 0

replay

delete

(20 40 60 80 100
Time step

Fig. 4. Distribution of attacks’ CAN ID bits.

distinguish attack features. The self-attention layer can reduce
dependence on external information and better capture the
internal correlation of features. Second, the rear part of the
model is a MD-LSTM network, which can extract deeper
characteristics from the time-series data.

Attacks with small-batch are more difficult to detect due
to their lower-attack frequency. The SAM can assign higher
weights to key parts of a sequence, making it more sen-
sitive to detecting local anomaly patterns within sequences.
However, the SAM may lack a comprehensive understanding
of time series data, performing inadequately in scenarios where
anomalies are not clearly related to the overall characteristics
of the sequence. On the other hand, MD-LSTM, with its long-
term memory capability, can continuously track contextual
information across the entire sequence, making it particularly
effective in understanding the overall characteristics of the
sequence under attack. However, MD-LSTM is less effective
at capturing anomalies at specific time points. Combining
self-attention and MD-LSTM leverages the efficient ability of
the SAM to focus on local information within the sequence,
while the MD-LSTM can provide a robust capability for
understanding global information in sequence. Therefore, the
integrated model is more sensitive to small-scale attacks.

A. Neural Network Design

1) Self-Attention Layer in MULSAM: The intention of the
self-attention layer can be considered as preprocessing the
input data by allocating different weight values. As shown in
Fig. 5 (left), the typical architecture of the self-attention layer
uses a fully connected network to get the internal Q, K, and V
matrices and the Softmax function as the internal activation
function. To simplify the internal calculation of the self-
attention layer and slash the volume of network parameters,
the fully connected network is replaced with the convolutional
network, and the Softmax activation function is modified to the
logic sigmoid activation function as shown in Fig. 5 (right).
This scheme also benefits the model algorithm design based
on the FPGA platform to execute better parallelly.

First, the input data is defined as follows:

’ -x)’l)‘ (2)

where X is the input vector, n is the time step of one input
data, and x,, represents a CAN ID with 11 dimensions.

X = (x0,x1,x2, ...

3279

Outputs

Outputs

|

Conv2D
T

MatMul

o I

Softmax Sigmoid
_______ T — 8
MatMul MatMul
Q K v
S
Conv2D
Inputs Inputs
Fig. 5. Improvement of self-attention.
Depth
ep mitt L mtt Ryt
t t t t
mi— —mf — — mit
MD- MD-
LSTM LSTM
pt=1 —» — hf — —s hitt
t t t
mh hb mh hb
t t t
mit— — mi — .
MD- MD-
LST™M LSTM
ht=1 — —_— hi —_— _'hf“
1 1 1 1
mé’l h171 mé 1 h171

Time

Fig. 6. Architecture of MD-LSTM.

The internal calculation process of the self-attention layer
can be expressed as follows:

(0, K, V) =Conv2D(X, (1, 1), Hidden_Dim % 3) (3)
A=o(kQ"))
Atm(A, v) — Consz(Av, (1,1, Output_Dim) 5)

where the Hidden_Dim stands for the number of output
channels of an internal matrix (Q, K, or V). The value of
the output matrix of (3) is dimensional evenly divided into
three parts, namely, O, K, and V. Then, the attention maps
are calculated after activation through (4), and the output
of the self-attention layer is obtained according to (5). The
Output_Dim represents the number of final output channels,
and the size of the input will be equal to that of the output
when Output_Dim 1is set to 1.

2) MD-LSTM in MULSAM: Unlike the traditional stacked
LSTM, the MD-LSTM network [9], as shown in Fig. 6, adds
LSTM cells along the depth dimension and the temporal
dimension of the network. This architecture gives the depth
dimension the same gradient channeling properties available
along the temporal dimension, which mitigates the vanishing
gradient problem in networks and extract deeper features.

The weight of different dimensions in the MD-LSTM
network can be individual or be shared in the storage. When
the different dimensions are independent, the calculation pro-
cess of each dimension can be parallel, which is beneficial to
the performance of the FPGA device. Thus, the design strategy
of independent dimension is followed in this article, and the
MD-LSTM cell can be split into two LSTM cells.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025
©oX@D| ... [Xo10) wy'| w| we Wy'x00) | Woxwo | WoXw@o .-
FaoXa| ... Xao) wi| wi| wy Wix00) | Wix0) | W% QFIFO
X@o)|[X@| ... [*@10) ® Vl/zq wk|lwyl - Mlqu(o,()) Wzkx(oyo) W7 x0,0) ko h) k(0,0
K FIFO
FeoXm) ... [Xmao Wi | wik| wy W00 | Wixeo | Wixoo .-
V FIFO
Fig. 7. Step computation of (Q, K, V) calculation module. n is (N — 1) and his (H —1).

Each LSTM cell in a different dimension uses a hidden state
together with a memory cell to communicate with the next.
The computation of the LSTM cell at each step is updated as
follows:

g = tanh(Wgux; + Wephi—1 + by)

ir = o (Wixx, + Wighi—1 + b;)

fi =0 (Wpxi + Winhi—1 + by)

0r = 0 (Woxxs + Wonhs—1 + bo)

=g 0Qir+c10f

h; = tanh(c;) ® o; (6)
where o is the sigmoid function, Wey, Wiy, Wp, W, are

the recurrent weight matrices of the input vector, and
Wen, Win, Wi, Wop, are the recurrent weight matrices of the

hidden vector. The functional LSTM(-,-,-,-,-) is used as short-
hand for (6) as follows:
(hy, ¢r) = LSTM(xy, hy—1, ci—1, Wi, Wp). (7N

Unlike the computation of LSTM, a MD-LSTM block
receives an input of two hidden vectors and two memory vec-
tors from the depth and temporal dimensions. The computation
is concise and proceeds as follows:

(h}, c}) - LSTM(x,, hcl . wl, W,ﬁ)
(hf, cf) - LSTM’(x,, W W2, W,f). ®)

Each dimension has different weight matrices that corre-
spond to the standard LSTM mechanism. Then these output
hidden vectors are concatenated into a new vector H as the
final output vector of MD-LSTM as follows:

H= [h}\,, h,zv] ©)

where N in (9) is the total number of time steps. In practice,
a one-time step indicates the time required for the system to
generate one CAN data message.

B. FPGA-based Model Design

How to improve the data locality of matrix structures is
a crucial problem for maximizing the performance of the
ML model. An automated caching mechanism is used to
improve the data locality in CPUs and GPUs, while FPGAs
allow the developer to allocate data structure resources [26].
To implement MULSAM application deployment at the edge
device, we analyze the internal parallelism of the algorithm,

Algorithm 1 (Q,K,V) Calculation

Input: time series of CAN ID (X)
1: for x[i] in X do

2 for j =0 to 10 do

3 if x[i] & (1 <<j) = 0 then

4 blixn+j =0

5: else

6: blixn+j] =1

7 end if

8 forh=0to (H- 1) do

9: qlhlli x n+j] =bli x n+j] ><th
10: K[l x n+j1 = bli x n+j] x WK
11: vIA[i x n+j1 =bli x n+j1 x Wy
12: end for

13: end for

14: end for

Output: O, K, V

and the hardware circuit is realized by Vivado high-level
synthesis (HLS). As the Neural Network design above, the
FPGA-based network design is also split into two parts,
including the self-attention pipeline design and MD-LSTM
pipeline design. By connecting each independent calculation
module through the FIFO resources, the whole calculation
process can be streamlined.

1) Self-Attention Pipeline Design: For CPUs or GPUs,
each step of the computation of the self-attention layer, as
shown in Fig. 5 (right), requires waiting for the completion of
the previous step. For example, The KQ” operation in (5) can
be computed when the Q and K matrices are fully completed.
The algorithm needs to be refactored because each module’s
input and output stream are FIFO queues instead of a complete
matrix, as shown in Fig. 7.

(O, K, V) Calculation Module Design: The Q, K, and V
matrices inside the self-attention layer do not have temporal
interdependency, so they can be combined and calculated
simultaneously, no matter whether it is in the CPU, GPU, or
FPGA architecture. Thus, a module is built for the internal
calculations of Q, K, and V, where the input stream data is
a time series of CAN ID bit features, and the output streams
are O, K, and V streams transformed from the matrices.
Algorithm 1 shows the whole process of this module.

Activation Calculation Module Design: Since the Q, and K
matrices are calculated sequentially, then KQ' in (5) cannot
be fully calculated at one time. The calculation expression of
the element of KQT is as follows:

11xN—-1

aim= Y kijgimime©,1,....H—1)
=0

(10)

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

Algorithm 2 Activation Calculation

Input: Q, K
1: fori=0to (11 x N-1)do

2: forh=0to (H-1)do

3: Alh x H + h] + = q[h][i] x k[il[h]

4: form=0to (h-1)do

5: Alh x H+ m] + = qlh][i] x k[i][m]
6: Alm x H + h] + = q[m][i] x k[i][h]
7: end for

8: end for

9: end for

10: fori =0to (11 x N - 1) do
11: Al =oAL

12: end for

Output: A =0(A)

Algorithm 3 Output Calculation

Input: AV
1: fori=0to (H- 1) do
2: for j=0to (H-1)do

3: fork =0to (11 x N-1)do
4: Attn_outTk] = A [i x H +]
xV[k+ 11 x N xj] x W,
5: end for
6: end for
7: end for

Output: Aftn_out matrix

where a; ,, is an element of the result of KQT, and H corre-
sponds to the number of output channels of a feature matrix
(0, K, V). Based on the structure of data flow transmission,
an optimized matrix calculation process is designed. When the
gij and k;; are read from the Q, K FIFO queues, k; jg;j; to
a;; can be added because g;; are gj; in QT. And as shown in
(11), the g;; and k; ; are also used to get the product with the
cached K and Q elements, respectively. The result is added to
the elements at the corresponding positions of the KQT matrix.
Due to the matrix of Q, K being dynamically generated, the
calculation process is not static, and we call it the dynamic
matrix multiplication in FPGA

azi+ =k jqji,z€ (0,1,...,i—1)

a; w+ :k,',jqj,w,we O,1,...,i—1). (11

The essence of (11) is to split (10) to make it suitable for
the data flow queue of Q and K. Since the values of the Q and
K matrices are dynamically generated, the activation results
(A) in (4) can not be computed unless obtaining all data in the
Q and K FIFO queues. Algorithm 2 shows the whole process
of this module.

Output Calculation Module Design: This module performs
the matrix multiplication of A with V and also conducts the
final convolution layer. In this process, the matrix multiplica-
tion is much easier than that of calculating the dynamic matrix
due to the matrix V is known.

As shown in Algorithm 3, an element a;; of the current
input A is multiplied by the element vj of the jth row of V,
and then the result is accumulated to the element r; of the ith
row of the result matrix. The calculation process is shown in

Fim+ = aijVim, me(0,1,...,11 x N—1). (12)

Since the value of the V matrix is completely computed,

when the A matrix inputs a row of data, a row of data of AV

3281

Enhanced Series (FIFO)

LSTM2 | |

\ N [mvm | Y, [Mvm] ,_
T T
V———t ————————————————————————
Co I o Juh o Jf-- orwaa |
%Cm lL{ & < i 0, ;
oy 3
®
®

Fig. 8. Step computation of LSTM cell.

can be calculated as

H—1
Soi=Wo Y _ 1ij 13)

j=0
where W, represents the weight value corresponding to the
oth output channel of the output convolution function, and s, ;
is the ith output value corresponding oth output channel. In
this article, the number of output channels is set to one so that
the input and output series of the self-attention layer have the
same length.

2) MD-LSTM Pipeline Design: Following the same design
principles as that of the SAM layer design, the design of the
MD-LSTM cell uses the FIFO queue and the data flow to
transmit input values, intermediate results serially, and output
values. So the pipeline of the entire cell calculation process is
realized. By separating the depth dimension and the temporal
dimension of the MD-LSTM cell, these two dimensions’ data
flow is entirely run in parallel. Thus, a specified LSTM
cell, which can apply to the calculation process of the two
dimensions, needs to be carefully designed.

First, the calculation process of a single time step of the
LSTM network is analyzed. Since the weights matrix and bias
vectors of the fully connected layer inside the LSTM cell
are completely known, to minimize the time delay, the whole
computation does not need to wait for the fully connected layer
to complete its calculation. So, after calculating one row of
the output result, the following calculation step can be started
immediately.

As shown in Fig. 8, the calculation process of the LSTM
cell is restructured into three parts, including LSTM-MLP,
LSTM-Activ, and LSTM-Tail. The three modules are con-
nected through FIFO resources to realize the task-level
pipeline. Various optimization methods of HLS are appropri-
ately used inside each module to reduce computing delay and
improve throughput.

LSTM-MLP: The LSTM-MLP module is used to process
Matrix-Vector Multiplication in parallel. In the internal cal-
culation of LSTM, four gate signals are independent, so the
optimization method of loop unrolling in HLS is used to the
for loop of line 3 in Algorithm 4 to perform the four MVM
parallelly.

LSTM-Activ: The LSTM-Activ module is not time-
dependent so the activation value can be quickly calculated

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3282

Algorithm 4 LSTM-MLP Calculation

Input: Artn_out matrix
1: fort =0to (N - 1) do

2: for j = 0 to 10 do

3: fork=0to (4 x H-1) do

4: gifos[k]+ = Wy[k] x Attn_out[j +j x N]
FWh X b1l

5: end for

6: end for

7: for j=11to (H- 1) do

8: fork=0to (4 x H-1) do

9: gifor[k]+ = Wy x h—1)[j]

10: end for

11: end for

12: end for

Output: gifo matrix

Algorithm 5 LSTM-Activ

Input: gifo matrix

1: fort =0to (N - 1) do

2: fork =0to (H-1)do

3: gt[k] = tanh(gifo;[k])

4: irlk] = o (gifo:[k + H])

S filk] = o (gifos[k +2 x HI)
6: o1[k] = o (gifor[k + 3 x H])
7: end for

8: end for

Output: g, iz, f7, 0r

Algorithm 6 LSTM-Tail

Input: i, f;, g1, 01
1: fort =0 to (N -1) do

2: fori=0to(H-1)do

3: crlil = gelil x irli] + ¢, [i] X fili]
4: hy[i] = tanh(c;[i]) x o[i]

5: end for

6: end for

Output: ¢, iy

for the next module. By using lookup table optimization,
two activation functions are implemented in the LSTM-Active
module, including the sigmoid and tanh functions. Algorithm 5
shows the whole process of this module.

LSTM-Tail: The LSTM-Tail module is applied to calculate
the output value of both the final hidden layer unit and the
memory unit. Since the calculation of the hidden unit depends
on that of the memory unit, these two steps of lines 3 and 4
in Algorithm 6 cannot be parallelized.

By limiting the module’s interface as a FIFO queue, we only
need to focus on the parallel optimization within the module in
our FPGA-based pipeline design scheme. So, the FPGA-based
model design can be efficiently implemented.

VII. EXPERIMENTS AND EVALUATION

We have designed and trained different baseline comparison
models. The generated dataset includes a total of 2813144
traces across six types of attacks. Before training the model,
we manually partition the dataset, allocating approximately
80% of the data—about 2250731 traces—for training. A further
10%-roughly 281314 entries—was used for testing, with the
remaining 10% reserved for validation. Then the computation
architecture of MULSAM was redesigned to be suitable for
deployment on the Ultra96-V2 board. The PC (Intel i9-10850K
CPU @ 3.6 GHz x 10, NVIDIA Quadro RTX 4000 GPU
@ 8 GB) runs Windows 10, while the Ultra96-V2 (2-GB
LPDDR4, UltraScale+MPSoC) runs PYNQ.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

97.5
97.0 M—* 98
F96.5 S
960 //F 296
£95.5 £ I
£
950 EEY i
500 Ep
B33 —8— Stacked LSTM 3 B Stacked LSTM
2030 MD-LSTM 290 MD-LSTM
9.5 —*— MULSAM - MULSAM
10 12 14 16 18 20 22 24 26 28 30 % % 0 » n
Model Depth Model Depth
@ (b)
Fig. 9. Performance evaluation on different model depth. (a) Overall

accuracy. (b) Training stability.

Our evaluation focuses on four aspects of the performance:
different model depths; various ML models; and two above
mentioned models based on the FPGA platform with different
datasets.

A. Different Model Depths

In this section, the normal and attack datasets are used,
which contain the original data from the vehicular CAN
bus and the generated attack data, respectively, to evaluate
the performance of Stacked LSTM, MD-LSTM, and our
MULSAM with different model depths. To compare the
performance improvement of the SAM on the MULSAM, the
structure of the self-attention layer is fixed, and only the model
depth of the MD-LSTM component was changed. The range
of model depth is 10-30, and the step size is 2.

In our experimental configuration, the Stacked LSTM model
employs two layers of LSTM, the MD-LSTM comprises
four LSTM layers, and the MULSAM integrates four LSTM
layers as well. An increased number of LSTM layers can
potentially enhance detection accuracy, yet escalate computa-
tional resource overhead. Our experiments demonstrate that a
four-layer LSTM already achieves a high-detection accuracy,
sufficient for practical needs while at the same time without
incurring redundant resource overhead. Further increasing
LSTM layers yields negligible improvements in detection
accuracy while incurring extra computational resources.

Overall Accuracy: Three models, including MD-LSTM,
Stacked LSTM, and MULSAM, are used to test the detection
accuracy. The detection accuracy present is the average value
from multiple experiments to prevent the dropout layer from
affecting the stability of the results. As shown in Fig. 9(a), the
detection accuracy of MULSAM is 1-2% higher than the other
two models under all depth conditions, and the accuracy of all
models tends to increase with the increment of the models’
depth. However, there exists a peak with all models, which
means that the accuracy of models no longer improves when
they reach a certain depth. MULSAM peaks can be seen at a
model depth of 22 and 24 for the other two models.

Training Stability: The stability of the training process is
crucial to obtaining a robust model. Fig. 9(b) visualizes the
accuracy of different methods when the number of model
depths is 16, 18, 20, 22, and 24. The MULSAM has an
accuracy fluctuation range of about 2-4% at all model depths,
while Stacked LSTM has a range of about 2.4-6%, and MD-
LSTM has a range of about 2.4-5%. A smaller range means
that it’s possible to faster train a model with high accuracy.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

normal -SEER 0

5000

DoS- DoS-
4000

fuzzy - fuzzy-
3000

spoofing- spoofing-

2000
replay - replay-
1000

delete - delete-

- - 0
D,

(@) (b)

13 31 417

3283

73 6000 normal B4& 0 13

5000

20 233 25

5000
DoS- 0

4000 4000
fuzzy- 0

3000 3000
spoofing- 0

2000 2000
replay- 23

1000 1000

delete- 18

N
00(‘“?> 00% r\“ﬂjqoo(&%w\m 6@\&
<

©

Fig. 10. Confusion matrix of classification. (a) Stacked LSTM. (b) MD-LSTM. (c) MULSAM.

TABLE 1
MODEL INITIAL HYPERPARAMETERS

Parameters Value
Epochs 100
Early stopping 5
Activation Function Softmax
Learning rate le-3
optimizer Adam
Loss Function CrossEntropyLoss
Batch size 128
Steps 32

Differences in Classification: As shown in Fig. 10, the
corresponding confusion matrices are generated to analyze the
classification differences of the models. In the classification
results of the replay attack, which is the most malicious among
all attacks, all three models identify the attack as a normal
state. However, the number of misidentifications by MULSAM
is only 233, which is approximately half that of MD-LSTM
and one-third for Stacked LSTM. The detection difference
in the replay attack may be caused by the multidimensional
architecture and the self-attention layer in MULSAM. This
demonstrates that MULSAM will have a lower-false-positive
rate and enhance the characteristics of small-batch attacks.

B. Various Machine Learning Models

Our baseline comparison models include SVM, MLP, CNN,
stacked LSTM, and MD-LSTM. The evaluation metrics of
comparison include the overall accuracy, precision, recall,
and F;| score. The details of the metrics are as follows:
Accuracy = ([TP + TN]/[TP + FN + FP + TN]), Precision =
(TP/[TP + FP]), Recall = (TP/[TP+FN]), and F; =
(2 - Precision - Recall/[Precision + Recall]), where TP, FP, TN,
and FN are four outcomes of the classification, representing
true positive, false positive, true negative, and false negative,
respectively.

The cross-entropy loss function, as defined as H(p, q) =
— > . p)logg(x), is used as the loss function for all ML
models, where p is the expected result, g stands for the
predicted result, and x is the index for both. All the models
are trained on 80 percent of the CAN data and validated on 10
percent, while the remaining 10 percent is used as a testing set.
As Table I shows, the maximum number of iterations is set to
100, and the initial learning rate is le-3. To reduce redundant
training process, the training of each model can automatically
be terminated early by setting the stopping threshold, which
is a hyperparameter debugged and selected according to the

TABLE I
PERFORMANCE ON VARIOUS MODELS

Model Acc (%) Attack Recall P F,
normal 0.2623 0.1456 0.1008
DoS 0.9983 0.9953 0.9923
SVM $2.07 fuzzy 0.9439 0.9650 0.9870
spoofing 0.9814 0.9272 0.8787
replay 0.7428 0.7023 0.6660
delete 0.5968 0.6909 0.8202
normal 0.5410 0.7795 0.6387
DoS 0.9988 0.9463 09718
MLP 80.08 fuzzy 0.9754 09718 09736
spoofing ~ 0.8814 0.9540 0.9163
replay 0.8400 0.6902 0.7577
delete 0.6396 0.4444 0.5244
normal 0.6711 0.8083 0.7333
DoS 0.9980 0.9773 0.9875
CONN 87.64 fuzzy 0.9525 0.9687 0.9605
spoofing 0.9956 0.9787 0.9871
replay 0.8778 0.7312 0.7978
delete 0.8044 0.7900 0.7972
normal 0.8880 0.9823 0.9328
DoS 1.0000 0.9998 0.9999
Stacked LSTM 97.07 fuzzy 0.9932 09917 0.9924
spoofing 0.9995 0.9678 0.9834
replay 0.9765 0.8927 0.9327
delete 0.9780 0.9912 0.9845
normal 09174 09882 0.9515
DoS 1.0000 1.0000 1.0000
MD-LSTM 97.91 fuzzy 09932 0.9925 0.9928
spoofing 0.9992 0.9815 0.9902
replay 0.9777 0.9283 0.9524
delete 0.9933 0.9845 0.9889
normal 09535 09932 0.9729
DoS 1.0000 0.9998 0.9999
MULSAM ogog Ty 09997 09973 09985
spoofing 0.9995 09937 0.9966
replay 09924 09605 0.9762
delete 0.9956 0.9945 0.9951

validation set. The adaptive gradient algorithm (Adam) [27],
which can adjust the learning rate, is used to optimize our
models. To prevent over-fitting of these models, the dropout
technique [28] is used in all deep learning models. The total
steps of the input series are set to 32, which corresponds to
approximately 30ms of CAN messages.

As we can see the performance of various models in Table II,
the SVM, CNN, and MLP perform well in detecting attacks
with flooding properties but perform poorly on normal state and
attacks with small-batch, which causes the overall accuracy to
be less than 90%, while that of LSTM-related models is more
than 97%. For example, the recall of SVM, MLP, and CNN are
only 26.25%, 54.10%, and 67.11%, respectively. The superior
performance of LSTM-related models shows the structure of
LSTM is suitable for processing the data with time correlation,
while the forms of SVM, MLP, CNN fail to do so. MULSAM
has arecall of 95.35% on the detection of the normal state, while

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3284

TABLE III
SELECTED DEPTH AND CORRESPONDING ACCURACY

Model Depth Acc (%)
Stacked LSTM 24 97.07
MD-LSTM 24 97.91
MULSAM 22 98.98
30 3
= DSP 27 @795 Latency (ms)
25 25| BN Accuracy (%) sgg |

Resource (%)
> & 8

n

0.0

0 .
Stacked LSTM Stacked LSTM

MD-LSTM

MULSAM

MD-LSTM

(a) (b)

MULSAM

Fig. 11. Performance evaluation on FPGA device. (a) Resource overhead.
(b) Accuracy and latency.

Stacked LSTM is only 88.80% and MD-LSTM is 91.74%,
which means that MULSAM can provide a more credible basis
for vehicle to make a decision. In the detection of the spoofing
attack with the flooding feature, MULSAM has a precision of
99.37%, while Stacked LSTM is only 96.78% and MD-LSTM
is 98.15%. The performance of the three LSTM-related models
is close, and all exceed 99% in the detection of DoS and fuzzy
attacks. In addition to having a slight drop in the results of the
DoS attack, the MULSAM has a higher recall, precision, and
F1 compared with other models.

C. Hardware Acceleration Evaluations

The results of the implementations of three LSTM-related
models, including stacked LSTM, MD-LSTM, and MULSAM,
are presented in this section. Due to the advantages of the
modular design approach, the programming of the LSTM cell
in MULSAM can be conveniently reused by Stacked LSTM
and MD-LSTM. The evaluations on FPGA platform and the
comparison between FPGA and TX2 will be presented.

1) Performance of FPGA Platform: The embedded exper-
iments for Stacked LSTM, MD-LSTM, and MULSAM are
running on an Ultra96-V2 device with 70560 look up table
(LUT), 216 block random access memory (BRAM) and 360
digital signal processor (DSP). The model depth of Stacked
LSTM, MD-LSTM, and MULSAM are selected corresponding
to the highest accuracy in Fig. 9(a) for the accelerated model
design on the FPGA platform. The depth selection and the
corresponding accuracy of the three test models are shown in
Table III.

Resource Overhead: The resource overhead has been visu-
alized after the model has been synthesized to register transfer
level (RTL) code, as shown in Fig. 11(a). It can be seen
from Fig. 11(a) that MULSAM uses the most resources
because of its complex internal structure. A MD-LSTM cell
contains 2-D LSTM, so the resource overhead of MD-LSTM
is approximately twice that of Stacked LSTM of the same
model depth. As we can see, all three accelerators are very
resource-efficient, which helps reduce power consumption in
FPGA.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

Accuracy and Latency: The experiment data includes 1600
evenly distributed samples, randomly extracted from the test
datasets and the corresponding labels. Fig. 11(b) shows the
latency and the accuracy of different FPGA-based accelerators.
Compared with the accuracy of the full-precision models in
Table III, the fixed-point quantization in the FPGA-based
accelerators results in that of Stacked LSTM, MD-LSTM, and
MULSAM in 0.38%, 1.41%, and 0.17% reduction, respec-
tively. MD-LSTM has the largest loss of accuracy, which is
likely that the multidimensional architecture of MD-LSTM
causes its performance to be more sensitive to the weight
parameters. However, MULSAM also has a multidimensional
architecture. Still, it has the lowest-drop accuracy (98.81%),
which is because that the SAM reduces the dependency of
MULSAM on the weight parameters. It is worth noting that
the total time step of the test data in the experiment is 32 steps,
which corresponds to about 30 ms of CAN data on the CAN
bus network. Therefore, the latency performance of all models
(maximum 1.88 ms) is far less than the generated time of CAN
data, which positively impacts the deployment of embedded
FPGA devices.

2) Comparison Between FPGA and TX2: To compare
FPGA-based embedded system security with GPU-based
embedded platform, we designed and trained different baseline
comparison models on Jetson TX2 as the Commercial-Oft-
The-Shelf GPU-based embedded platform. The Jetson TX2
is an embedded computing device equipped with 56-core
NVIDIA Pascal GPU architecture with 256 NVIDIA CUDA
cores and dual-core NVIDIA Denver2 + quad-core ARM
Cortex-A57. Both Ultra96-V2 and TX2 run PYNQ.

Throughput Rate: Fig. 12(a) shows the throughput rate of
different LSTM-related accelerators in different platforms. The
same models running on different platforms have the same
network topology and weight parameters. We can see that the
throughput rate of the FPGA platform is larger than that of
the TX2 platform due to its powerful computing performance.
In the throughput rates of the FPGA platform, MD-LSTM
has that of 1316.56 MFLOP/s because the two independent
dimensional LSTM layers inside the MD-LSTM utilize a
parallel design methodology.

Power and Energy Efficiency: From Fig. 12(b), the power
consumption of all three models exceeds 5 W on the TX2,
while that on the FPGA platform is only about 2 W. In
terms of energy efficiency, the FPGA-based implementation
still has a great advantage, which can be seen in Fig. 12(c).
For Stacked LSTM models, the FPGA hardware accelerators
are about twenty-one times as energy-efficient as the TX2. The
energy efficiency of MULSAM is 145 MLOP/(s-W), which is
much higher than the 11 MLOP/(s-W) of the TX2 platform.
Although MULSAM has the lowest-energy efficiency among
the three FPGA-based accelerators, its energy efficiency is still
higher than TX2 which is the mainstream GPU platform for
embedded computing.

D. Models on the Move

We conducted testing experiments on an Ultra96-V2 embed-
ded device installed in an actual vehicle as an FPGA-enabled

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

2000 15

3285

N FPGA
BN TX2
” 1500

1317

Power (w)

Throughput (MFLOP/s)
o 2
2 8
5 3

0 0
Stacked LSTM MD-LSTM MULSAM Stacked LSTM

(a)
Fig. 12.
% CGL-410 Integrated
Navigation
Coart |
Model Deployment Model Testing
Fig. 13. FPGA device during testing.

gateway for intrusion detection on vehicular CAN bus, as
shown in Fig. 13. The embedded experiments for Stacked
LSTM, MD-LSTM, and MULSAM are run based on their
trained models from the datasets collected in real world and
tested in the driving scenario to guarantee that the vehicle can
prevent malicious navigation in a short time from correspond-
ing attacks.

Our experiment utilizes an autonomous vehicle platform
measuring 1000 mm x 705 mm x 389 mm. The track width
between the left and right wheels is 487 mm, while the
wheelbase—the distance between the front and rear axles is
610 mm. The diameter of the drive wheels is 241 mm. The
autonomous vehicle platform is controlled by an STM32
industrial computer equipped with a speed of 1 Mb/s CAN
communication interface, which manages the two drive wheels
to enable linear movement or differential speed for curved
motion. We employ a USB-CAN analyzer (CANalyst-II) and a
laptop installed with USB-CAN Tool software to collect CAN
data from the autonomous vehicle platform. In our experiment,
we designed corresponding attack effects during the operation
of the autonomous vehicle platform to simulate the actual
driving situation of the real vehicle in the actual environment.

We trained and evaluated three models using a total of
151050 pieces of data collected from the autonomous vehicle
platform. The training set, test set, and validation set were
divided into an 8:1:1 ratio. The results when run on a PC are
shown in Table IV. Test results after deploying the model to
the FPGA platform as shown in Fig. 14, the test data includes
1600 evenly distributed samples, randomly extracted from the
test datasets and the corresponding labels.

MD-LSTM

EE FPGA
BN TX2

625 EEE FPGA
600 S TX2

10.35

Energy Efficiency (MFLOP/(s*w))

S
S

0
MULSAM Stacked LSTM

MD-LSTM

MULSAM

(b) (c)

Comparison of different accelerators between FPGA and TX2 platforms. (a) Throughput rate. (b) Power. (c) Energy efficiency.

TABLE IV
PERFORMANCE ON VARIOUS MODELS

Model Acc (%) Attack Recall P Fy FPR FNR
normal 1.0000 0.9820 0.9909 0.0037 0.0000
DoS 1.0000 0.9554 0.9772 0.0090 0.0000
Stacked LSTM 9525 fuzzy- 1.0000 1.0000 1.0000 0.0000 0.0000
spoofing 0.9463 0.7856 0.8585 0.0424 0.0537
replay 0.9751 0.9989 0.9869 0.0002 0.0249
delete 0.8037 0.9928 0.8883 0.0013 0.1963
normal 0.9513 09936 0.9720 0.0013 0.0487
DoS 1.0000 1.0000 1.0000 0.0000 0.0000
MD-LSTM 89.90 fuzzy 1.0000 1.0000 1.0000 0.0000 0.0000
spoofing 1.0000 0.7675 0.8685 0.0454 0.0000
replay 0.7366 0.9352 0.8241 0.0140 0.2634
delete 0.7685 0.6975 0.7313 0.0526 0.2315
normal 0.9968 1.0000 0.9984 0.0000 0.0032
DoS 1.0000 1.0000 1.0000 0.0000 0.0000
MULSAM 97.47 fuzzy 1.0000 1.0000 1.0000 0.0000 0.0000
spoofing 0.9977 0.9140 0.9540 0.0173 0.0023
replay 0.9187 09352 0.9269 0.0133 0.0813
delete 0.9327 09988 0.9646 0.0002 0.0673

100
7% Latency (ms)
2.5) BN Accuracy (%) 93.75 95
90.13
2.0 1.88 920
85.38 |
7, 85
15
80
1.0
75
0.48 0.49
05| p 7 70

0.

0 Stacked LSTM MD-LSTM MULSAM

Fig. 14. FPGA performance using data from autonomous vehicle platform.

The results in Table IV and Fig. 14 demonstrate that the
detection accuracy of MULSAM is significantly superior to
that of Stacked LSTM and MD-LSTM, regardless of the
running platform. Compared to models trained with open-
source datasets, the models trained with our self-collected
data show a slight decrease in detection accuracy. This is
due to the smaller data volume of our self-collected data.
Our collected dataset is only about 150000, while the open-
source dataset contains more than 2.8 million traces. However,
MULSAM’s detection accuracy still exceeds 93% with a
much smaller dataset, which reflects a low dependency on
the dataset and a strong adaptability to different datasets. We
note that although MULSAM costs an additional 1.4 ms in
computational overhead compared to the other two models,
tolerating a small amount of time delay to achieve a 2%
improvement in accuracy is entirely acceptable and meaning-
ful, considering that the fastest human reaction time is around

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3286

TABLE V
PERFORMANCE ON VARIOUS DATASETS

Dataset | Model Acc (%) Attack

benign

Recall P F, FPR FNR
0.9952 0.9984 0.9968 0.0012 0.0048

LSTM 999 Mooding 10000 0.9952 0.9976 00013 0.0000

fuzzy 0.9961 0.9942 0.9952 0.0013 0.0039

Sonata malfunction 1.0000 1.0000 1.0000 0.0000 0.0000
benign 0.9936 1.0000 0.9968 0.0000 0.0064

flooding 1.0000 0.9952 0.9976 0.0013 0.0000

MULSAM 99.67
fuzzy 1.0000 0.9904 0.9952 0.0021 0.0000

malfunction 1.0000 1.0000 1.0000 0.0000 0.0000
0.9880 0.9945 0.9913 0.0042 0.0120
1.0000 0.9979 0.9989 0.0006 0.0000
fuzzy 0.9922 0.9759 0.9840 0.0067 0.0078
malfunction 0.9887 0.9981 0.9934 0.0003 0.0113
benign 0.9919 0.9995 0.9956 0.0004 0.0081
flooding

benign

flooding

LSTM 99.16

Soul

MULSAM 99.71
fuzzy 1.0000 0.9868 0.9934 0.0036 0.0000

malfunction 1.0000 1.0000 1.0000 0.0000 0.0000
0.9945 0.9742 0.9843 0.0257 0.0055
1.0000 1.0000 1.0000 0.0000 0.0000
fuzzy 0.8452 0.9632 0.9003 0.0030 0.1548
malfunction 0.9967 0.9967 0.9967 0.0006 0.0033
0.9924 0.9871 0.9898 0.0130 0.0076
1.0000 0.9979 0.9990 0.0007 0.0000
fuzzy 0.9085 0.9485 0.9281 0.0041 0.0915
malfunction 1.0000 1.0000 1.0000 0.0000 0.0000

benign

flooding

LSTM 98.38

Spark

benign

MULSAM 9892 fooding

7 LSTM
= MULSAM

98

°
X

941 o

Accuracy(%)

92

92

88 Sonata Soul Spark

Fig. 15. FPGA performance evaluation using various datasets.

0.7s and autonomous vehicles may require 0.5s in driving
scenarios.

E. Different Dataset Comparison

We compared the performance of the MULSAM algorithm
with the algorithm used in [13], which employed a single-layer
LSTM for attack detection and utilized three different datasets:
1) the Sonata dataset; 2) the Soul dataset; and 3) the Spark
dataset, to train their algorithm. We trained both a single-layer
LSTM and MULSAM using the datasets from the [13] and
compared the detection results. The results when run on a PC
are as shown in Table V.

The results in Table V show that the detection accuracy,
Recall, and F1 score of MULSAM are slightly higher than
those of single-layer LSTM across the Sonata, Soul, and
Spark datasets. In addition, MULSAM shows lower FNR
and FPR than single-layer LSTM spanning across all three
datasets. Especially in the Spark dataset, our MULSAM has a
0.29% decrease in FPR and a 1.61% decrease in FNR, further
indicating that MULSAM has a strong adaptability to various
datasets and is more likely to exhibit better performance in
complex real-world application scenarios.

We also employ our method on the FPGA platform using
the dataset in [13]. The results are shown in Fig. 15, the test
data also includes 1600 evenly distributed samples, randomly
extracted from the test datasets.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

Fig. 15 demonstrates that the superiority of the MULSAM
can be further improved after deploying our MULSAM to the
FPGA platform. The average detection accuracy of MULSAM
is 2.6% higher than that of single-layer LSTM. Furthermore,
the detection accuracy of MULSAM deployed on the FPGA
platform degrades by only 2.8%, while the performance of
single-layer LSTM reduces by 5.6%, which reflects a higher
reliability of MULSAM than single-layer LSTM.

VIII. DISCUSSION

Power Consumption: Compared to typical ECUs, imple-
menting our method on FPGA does require higher-power
consumption. However, our experiment result shows that
this power consumption only costs 1.7% of the total power
consumption of an autonomous vehicle platform, which is
mounted with a 51.2 V/40 Ah Li-ion battery pack and can
support 12 V and 120 W power supply. We note that it is
acceptable to sacrifice a small part of the power consumption
to ensure high-recognition accuracy, especially in driving
scenarios where safety is the highest priority.

One-Shot Attack: In our MULSAM algorithm, we integrate
a SAM with MD-LSTM to enhance the algorithm’s ability
to learn and process time-series data, thereby improving the
detection accuracy of single-time attacks within vehicular
networks, and effectively addressing the problem of single-
time attacks. The SAM can consider the other elements within
the sequence when processing a certain element, capturing
the long-distance dependencies within the sequence, thus
posing a powerful capability to detect anomalies in sequences.
Meanwhile, MD-LSTM enhances the original LSTM model by
introducing a multidimension mechanism, which enables long-
term storage and short-term memory of sequence information
while processing information at different time dimensions,
allowing it to perform distinctly in dealing with anomalies
in data sequences. This combination within the MULSAM
algorithm leverages the advantages of both the SAM and
MD-LSTM in detecting anomalies in time-series data, such
as single-time attacks, enabling identification and response
to those potentially one-off but destructive attack behaviors,
thereby securing the safety of vehicular networks.

DoS and Fuzzy Attacks With Nonflooding: Flooding strategy
is a common approach in DoS and fuzzy attacks. However, a
few DoS and fuzzy attacks are based on nonflooding strategies,
such as sending specific constructed CAN frames and sending
abnormal or invalid CAN messages, to interfere with the
normal communication of the network. However, those DoS
and fuzzy attacks are still based on detectable patterns with
unique characteristics. As a result, we can train a new model
to enable the detection of both DoS and fuzzy attacks with
nonflooding characteristics.

Escape Detection: The powerful sequence anomaly detec-
tion capabilities in our proposed MULSAM algorithm can
effectively identify most replay and delete attacks. However,
these two types of attack are slightly shifted from the normal
CAN signals, which may not be fully distinguishable by
our MULSAM. For the few attacks that escape detection,
we can further enhance the system’s detection capabilities

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

XU et al.: MULSAM: MULTIDIMENSIONAL ATTENTION

by combining multiple detection methods or by setting up
multiple layers of defense mechanisms.

Computational Overhead: The proposed MULSTM algo-
rithm aims to enhance the accuracy of attack detection.
Given that the fastest human reaction time can be around
0.7 s and an autonomous vehicle may require 0.5 s, although
MULSTM requires more computational resources and costs an
additional 1.4 ms in computation time compared to the other
two algorithms, sacrificing a small portion of computational
resources and a slight delay while in exchange for a 2%
improvement in accuracy is entirely acceptable and meaningful
in practice. In an era where the computational ability of
autonomous driving devices is boosting, tolerating a small
portion of computing resources to ensure high accuracy is a
strategy worth exploring and implementing.

IX. CONCLUSION

The security threats along with the development of
autonomous driving affect the benign message transmission
of the in-vehicle CAN bus communication network. We
developed an enhanced intrusion detection technology based
on MD-LSTM and SAM (MULSAM), which can detect the
type of attack with a small-batch. To deploy our model
on vehicles, the computation process of MULSAM adopted
multiple parallel methods and implemented them based on
FPGA platform. The experiment proved that the lightweight
reduction of the weights of the neural network did not impact
the detection accuracy, providing a promising solution for
vehicular real-time online detection systems.

REFERENCES

[1] K. H. Johansson, M. Torngren, and L. Nielsen, “Vehicle applications
of controller area network,” in Handbook of Networked and Embedded
Control Systems. Berlin, Germany: Springer, 2005, pp. 741-765.

[2] O. Avatefipour and H. Malik, “State-of-the-art survey on in-vehicle
network communication (CAN-Bus) security and vulnerabilities,” 2018,
arXiv:1802.01725.

[3] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages
through analysis of ID sequences,” in Proc. IEEE Intell. Veh. Symp. (IV),
2017, pp. 1577-1583.

[4] H. J. Jo, J. H. Kim, H.-Y. Choi, W. Choi, D. H. Lee, and 1. Lee,
“MAuth-CAN: Masquerade-attack-proof authentication for in-vehicle
networks,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2204-2218,
Feb. 2020.

[5] S. Rajapaksha, G. Madzudzo, H. Kalutarage, A. Petrovski, and
M. O. Al-Kadri, “CAN-MIRGU: A comprehensive CAN bus attack
dataset from moving vehicles for intrusion detection system evalua-
tion,” in Proc. Symp. Veh. Security Privacy Internet Soc., 2024, pp. 1-11.

[6] E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks and
countermeasures for in-vehicle networks,” ACM Comput. Surv., vol. 54,
no. 1, pp. 1-37, 2021.

[7] Z. Tan et al., “Human—machine interaction in intelligent and connected
vehicles: A review of status quo, issues, and opportunities,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 9, pp. 13954-13975, Sep. 2022.

[8] M. Baek et al., “Accurate prediction of protein structures and interactions
using a three-track neural network,” Science, vol. 373, no. 6557,
pp. 871-876, 2021.

[91 D. Wu, H. Xu, Z. Jiang, W. Yu, X. Wei, and J. Lu, “EdgeLSTM: Towards

deep and sequential edge computing for IoT applications,” IEEE/ACM

Trans. Netw., vol. 29, no. 4, pp. 1895-1908, Aug. 2021.

A. Vaswani et al., “Attention is all you need,” in Proc. 31st Adv. Neural

Inf. Process. Syst., 2017, pp. 5998-6008.

K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity

for autonomous vehicles: Review of attacks and defense,” Comput.

Security, vol. 103, Apr. 2021, Art. no. 102150.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

3287

T. Huang, J. Zhou, and A. Bytes, “ATG: An attack traffic generation
tool for security testing of in-vehicle CAN bus,” in Proc. 13th Int. Conf.
Availab., Rel. Security, 2018, pp. 1-6.

V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion
detection using recurrent autoencoders in automotive embedded
systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 11, pp. 3698-3710, Nov. 2020.

H. Xu, D. Wu, Y. Lu, J. Lu, and H. Zeng, “Models on the move: Towards
feasible embedded Al for intrusion detection on vehicular CAN bus,” in
Proc. USENIX ATC, 2024, pp. 1049-1063.

0. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis,
“Intrusion detection systems for intra-vehicle networks: A review,” IEEE
Access, vol. 7, pp. 21266-21289, 2019.

I. Rouf et al., “Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study,” in Proc.
USENIX Security Symp., 2010, pp. 323-338.

M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An
unsupervised intrusion detection system for high dimensional CAN bus
data,” IEEE Access, vol. 8, pp. 58194-58205, 2020.

M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi,
“LSTM-based intrusion detection system for in-vehicle can bus commu-
nications,” IEEE Access, vol. 8, pp. 185489-185502, 2020.

T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detection to
automotive it-early insights and remaining challenges,” J. Inf. Assur.
Security, vol. 4, no. 6, pp. 226-235, 2009.

T. P. Vuong, G. Loukas, and D. Gan, “Performance evaluation of
cyber—physical intrusion detection on a robotic vehicle,” in Proc.
CIT/IUCC/DASC/PICom, 2015, pp. 2106-2113.

C. Ling and D. Feng, “An algorithm for detection of malicious messages
on CAN buses,” in Proc. Nat. Conf. Inf. Technol. Comput. Sci., 2012,
pp. 627-630.

K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in Proc. 25th USENIX Conf. Security Symp.,
2016, pp. 911-927.

W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Trans. Inf. Forensics Security, vol. 13, pp. 2114-2129,
2018.

J. Zhou, P. Joshi, H. Zeng, and R. Li, “BTMonitor: Bit-time-
based intrusion detection and attacker identification in controller area
network,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 6, pp. 1-23,
2019.

G. Dupont, A. Lekidis, J. J. den Hartog, and S. S. Etalle, 2019,
“Automotive controller area network (CAN) bus intrusion dataset
v2,” Dataset. [Online]. Available: https://data.4tu.nl/articles/dataset/
Automotive_Controller_Area_Network_ CAN_Bus_Intrusion_Dataset/
12696950/2

M. Siracusa and F. Ferrandi, “Tensor optimization for high-level syn-
thesis design flows,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 11, pp. 4217-4228, Nov. 2020.

P. Joulani, A. Gyorgy, and C. Szepesvdri, “Delay-tolerant online convex
optimization: Unified analysis and adaptive-gradient algorithms,” in
Proc. AAAIL 2016, pp. 1744-1750.

M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with
stochastic transformations and perturbations for deep semi-supervised
learning,” in Proc. 30th Conf. Neural Inf. Process. Syst., 2016,
pp. 1163-1171.

He Xu received the B.S. degree from the College
of Electrical and Information Engineering, Hunan
University, Changsha, China, in 2019, where he is
currently pursuing the M.S. degree in electronic
science and technology.

His research interests include deep learning and
embedded systems.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

3288

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 9, SEPTEMBER 2025

Xiaokang Shi received the B.S. degree in electronic
information engineering from Huaqiao University,
Xiamen, China, in 2022. He is currently pursuing
the M.S. degree with the College of Electrical
and Information Engineering, Hunan University,
Changsha, China.

His research interests include wireless sensing and
embedded systems.

Hansheng Liu received the B.S. degree in mechan-
ical design manufacturing and automation from
Fujian Agriculture and Forestry University, Fuzhou,
China, in 2021. He is currently pursuing the M.S.
degree with the College of Mechanical and Vehicle
Engineering, Hunan University, Changsha, China.

His research interests include simultaneous local-
ization and mapping.

Yanwen Wang (Member, IEEE) received the M.S.
degree in electrical engineering from the Missouri
University of Science and Technology, Rolla, MO,
USA, in 2013, and the Ph.D. degree in computer
science from Hong Kong Polytechnic University,
Hong Kong, in 2019.

He is currently an Associate Professor with the
College of Electrical and Information Engineering,
Hunan University, Changsha, China. His research
interests include mobile computing, signal process-
ing, and data analysis.

Jiwu Lu (Member, IEEE) received the M.S. degree
from Siegen University, Siegen, German, in 2006,
and the Ph.D. degree from Twente University,
Enschede, The Netherlands, in 2011.

He then worked with the National Institute of
Standards and Technology, Gaithersburg, MD, USA.
He is currently a Professor with Hunan University,
Changsha, China. His research focuses interdisci-
plinary research, including energy harvesting and
edge computing in IoT and power semiconductor
devices in microelectronics.

Haibo Zeng (Member, IEEE) received the Ph.D.
degree in EECS from the University of California at
Berkeley, Berkeley, CA, USA, in 2008.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA. His research
interests include embedded systems, cyber—physical
systems, and real-time systems.

Dr. Zeng has served as the TPC Member for
RTSS, DAC, EMSOFT, RTAS, and ICCAD, and is
an Associated Editor for the ACM Transactions on

Embedded Computing Systems and other journals.

Renfa Li (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering and computer
sciences from the Huazhong University of Science
and Technology, Wuhan, China, in 2002.

He is a Professor with Hunan University,
Changsha, China, and was the Dean of the
College of Computer Science and Electronic
Engineering, Hunan University and the Director of
the Key Laboratory for Embedded and Network
Computing of Hunan Province. His major research
includes embedded systems, distributed systems, and
cyber—physical systems.

Di Wu (Member, IEEE) received the Ph.D. degree in
computer science from the University of California,
Irvine, Irvine, CA, USA, in 2013.

He is currently a Professor with Hunan University,
Changsha, China, and an Adjunct Researcher with
the University of California, Irvine. His research
interests include future networking, intelligent ana-
lytics, and smart architecture.

Prof. Wu has actively served on many conference
committees and is currently an Associate Editor
for the IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2025 at 06:11:30 UTC from |IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

