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Abstract—In indoor fire rescue, swift and precise fire source
localization and fire severity assessment are pivotal for firefighting
strategic planning and casualty evacuation. However, existing
solutions primarily focus on detecting fire presence, which do
not offer insights into fire’s localization and severity. In this
paper, we propose UltraFlame, an accurate, user-friendly, and
timely system for pinpointing fire sources and assessing fire
severity based on acoustic sensing, which bridges significant gaps
in fire safety and response. UltraFlame consists of a collocated
commodity speaker and microphone pair, sensing fire by emitting
inaudible sound waves. We conduct an in-depth investigation
of sound propagation impacted by fire combustion, providing
physically interpretable data for deep learning framework and
enabling fire source localization even without any sound reflection
by fire. We dedicatedly establish a correlation between fire
severity and sound propagation delays, which serves as an
effective indicator for estimating the heated region. Finally, an
appropriate deep learning framework is employed to effectively
extract temporal and spatial features from channel measurement.
Extensive experiments demonstrate that 94% of the localization
results have an error of less than 0.8m. Additionally, UltraFlame
achieves an accuracy of 96.9% in fire severity assessment across
diverse setups, providing real-time and reliable monitoring.

Index Terms—Acoustic sensing, channel impulse response, fire
source localization, fire severity assessment

I. INTRODUCTION

Motivation. In indoor fire rescue operations, every minute
counts and every life matters. Merely detecting the presence
of a flame is far from sufficient to meet the requirements of
modern fire rescue systems, as shown in Fig. 1. In high-density
residential buildings, the lack of precise fire localization can
lead to mass panic, posing difficulties for firefighters in quickly
and effectively enacting fire rescue strategies and planning
evacuation routes. Transportation hubs require rapid fire source
localization to ensure passenger safety and control the fire
spreading. Moreover, industrial hazardous materials demand
for immediate and accurate fire severity estimation to prevent
disasters. Power supply rooms, educational institutions, data
centers, and other indoor facilities all face unique challenges,
and simply knowing the occurrence of a fire event is not
enough to address these issues. Furthermore, simply detecting
the fire at the room level is insufficient for automatic firefight-
ing robots to extinguish fires quickly and precisely at specific
locations.

Prior works and limitations. Existing fire monitoring
approaches are limited to mere detection of fire presence,
which commonly rely on smoke detectors [6], [8], [25], [29],
such as photoelectric sensors [8], ionization sensors [29], and
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Fig. 1. Fire incidents and rescue responses. (Generated by ChatGPT 4.0)

(c) Accurate assess-
ment of fire severity.

gas sensor [8], enabling early warnings and timely detection
of smoke. However, these sensors only trigger alarms when
certain thresholds are exceeded, which lacks the information
of fire’s location and severity. Deploying multiple infrared
sensors enables fire source localization, while still struggling
with assessing fire severity and facing challenges when the
fire sources are obstructed [1]. In vision-based methods, it
is challenging to locate fire source and assess fire severity if
cameras are contaminated or obscured by smoke particles [23].
Wireless signal-based fire monitoring methods have attracted
attention in recent years [11], [12], [16]-[18], [26], [37], [39].
Recent researchers employ Radio Frequency (RF) technology
to detect the presence of smoke. The intuition is that smoke
particles impact the RF signal propagation paths, causing
changes in signal strength [16], [26], [39]. However, the RF-
based method entails long processing delay to output a fire’s
location [26], which is hard to satisfy real-time requirement
of fire monitoring systems.

Recent years have witnessed a surge of acoustic-based
sensing technologies [3], [21], [24], [33]-[36], [38]. In fire
monitoring, microphones have been employed to passively
capture sound generated by flame combustion [21], [24]. By
analyzing the frequency and amplitude of the sound during
combustion, it is possible to determine fire source location and
assess its severity. However, passive fire monitoring only using
microphones is susceptible to environmental noises [21]. Dif-
ferent from passive acoustic sensing techniques, active probing
fire is superior in stronger controllability, inaudibility, and
signal processing advantages, potentially enhancing detection
accuracy and reliability. AcousticThermo proactively emits an
acoustic pulse signal to measure air temperature by calculat-
ing sound propagation speed [38]. However, AcousticThermo
entails precise system initialization to obtain the round-trip
distance of sound signal before use, which is difficult or even
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Fig. 2. CIR shown in a 3-D matrix. Fig. 3. CIR plot.
impossible to satisfy in practice. HearFire combines acoustic
absorption and sound speed variations to detect early stage of
fire, i.e., smoke, in indoor environments [33]. However, recent
active acoustic-based works primarily focus on fire presence
detection and do not investigate fire source localization and
severity assessment, which are extremely important for emer-
gency response to reduce casualties and property losses.

Challenges. In this paper, we propose UltraFlame, an
acoustic-based fire monitoring system devoting to fill the gap
of existing fire monitoring system. However, implementing
such two crucial functionalities of fire monitoring using proac-
tively emitted acoustic signals presents enormous challenges.
The fundamental challenge of localizing fire sources involves
how to measure acoustic signals affected by flames and deter-
mining the source’s position. Since fire does not reflect sound
waves [2], current methods to detect fire presence rely on
acoustic signals that penetrate flames and reflect from objects
behind the fire [33]. These methods compare the emitted
and residual sound energy after being absorbed by the fire,
allowing for accurate detection of the presence of flames.
However, intuitively, sound waves that penetrate fires do not
provide information about the location of the fire source.
Regardless of where the fire source is positioned between
the acoustic devices and the reflecting object, the energy
absorption pattern penetrating fire is consistent, indicating only
the amount of energy lost during the round trip. Therefore,
achieving fire source localization using acoustic signals is a
nontrivial task.

The second challenge lies in how to establish a reliable
correlation between fire severity and sound propagation. Fire
combustion is a highly dynamic process involving multiple
complicated factors, including the nature of the combustible
material, flame shape, temperature, etc. These factors interact
with each other and release a great amount of heat, forming
an irregular and unstable heated region near the flame, making
it challenging to accurately measure the fire severity. While
sound energy absorption property can effectively detect the
event of fire occurrence, it may lack the ability to correlate
with fire severity due to its randomness characteristic caused
by complex and incomplete fire combustion.

Solutions. To address the first challenge, we conduct an
in-depth study of the multi-path propagation characteristics
of acoustic waves in indoor environments when fire source
appears at different locations, and synthetically design a deep
learning framework to position fire sources. Fortunately, al-

Features:
Angles

Distances

Fig. 4. Overview of UltraFlame.

though fire itself does not reflect any acoustic signal, the
sound penetrating fire at different locations still encompasses
reliable and detectable patterns in terms of sound absorption in
indoor environments. Specifically, we observe distinct sound
energy propagation patterns when fire is located at different
distances and angles to the acoustic device, which significantly
affects the acoustic channel measurements across multiple
paths, resulting in varying sound intensities. Our extensive
experiments demonstrate that fire sources located at different
places, such as close to acoustic device, close to walls, and
near a corner of a room, exhibit explicit and detectable nonlin-
ear sound propagation characteristics. This in-depth analysis
lays a solid foundation for accurate and interpretable data,
facilitating us to apply a deep learning framework to establish
a definite correlation between channel measurement and fire
source positions. Our solution validates the feasibility of fire
source localization using acoustic signals. We deliberately
design a Vision Transformer (Vi-T) model to achieve accurate
fire source localization.

To assess fire severity, we conduct a comprehensive analysis
on sound propagation properties and dedicatedly quantify the
relationship between the diameter of region where the heat
is released by fire and the sound propagation delays. Such
quantification is based on the fact that sound speed increases
with elevating temperature. Our observation reveals that a
larger flame generates a more extensive high-temperature area.
As such, sound propagation can be more easily affected by the
fire, resulting in a wider transmission delay range in channel
measurement. Employing this correlation enables timely mon-
itoring of fire impacted region, providing prompt feedback on
the fire severity and accurate prediction of spreading tendency.

Contributions. In a nutshell, our main contributions are
summarized as follows:

o We bridge the gap of existing fire detection system by
implementing two crucial functionalities in fire monitor-
ing systems. To the best of our knowledge, UltraFlame is
the first system utilizing acoustic signals for pinpointing
fire sources and assessing fire severity.

o Unlike existing methods that using signal reflection for
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object localization, we prove that sound penetration still
plays a crucial role in accurately pinpointing the fire
source location. Moreover, we develop an innovative
acoustic sensing metric to effectively assess fire severity.

o« We implement a prototype of UltraFlame using low-
cost commodity acoustic devices. Our experiments show
that 94% of the localization results have an error of
less than 0.8m. Additionally, UltraFlame demonstrates
an accuracy of 96.9% in assessing fire severity in indoor
environments'.

II. BACKGROUND
A. Fire Event Presence Detection Using Acoustic Signals

Existing acoustic-based approach, named HearFire [33],
integrates a commercially available speaker and a microphone
array, continuously emitting a predefined audio frame to sense
the fire presence. The intuition is that sound energy can be
absorbed by fire and sound speed increases with the elevated
temperature. Zadoff-Chu (ZC) sequence is applied to probe
the channel due to its high autocorrelation property, and cross-
correlation based channel impulse response (CIR) estimation
scheme is employed to measure the channel influenced by fire
combustion.

CIR has been widely applied in acoustic sensing [15], [19],
[27], [28], [30]-[32], enabling the granular segmentation of
multipath signals into discrete bins or taps, each of which
correlates to a specific range of propagation delays, as illus-
trated in Fig. 2. CIR h[7] consists of complex values, profiling
a comprehensive characterization of the attenuation of signals
with different delays 7 over time ¢. By isolating the bins that
are exclusively affected by the targets of interest, it is possible
to monitor the target by investigating fluctuations in signal
delay and attenuation.

To achieve room-scale sensing while simultaneously main-
taining the inaudibility of the emitted signal, HearFire exploits
frequency domain interpolation scheme [27] on ZC sequence
to extend its length and applies a dedicated parameter config-
uration scheme to maintain reliable sensing. The commodity
speaker unceasingly emits the interpolated ZC sequence, part
of whose energy will be absorbed by the heat released by fire.
Such a sound energy absorption pattern can be captured by
CIR measurement. Hearfire then removes the environmental
interference and extracts the merely fire-impacted CIR using
differential method on two adjacently received CIR traces.
Fig. 3 shows the CIR measurements when fire is burning,
which displays random variations in amplitude after igniting
the fire, revealing a distinct pattern of signal absorption due to
incomplete combustion. While effectively detecting fire event
occurrence, the functionalities of fire source localization and
severity assessment are not investigated in HearFire.

B. Fire Severity

Fire severity can be jointly characterized by variation in the
energy released and the size of flame during the combustion
process [7], which can be represented as:

'Experiments were conducted with the presence of professional firefighters
and were approved by the Institutional Review Board.

FireSeverity(Q) o8 nCpTZ (1

where () denotes the released heat of the flame, n is amount
of substance, which represents the quantity of entities (such
as molecules, atoms, or ions) contained in a substance. C), is
the specific heat capacity of a substance at constant pressure
(i.e., atmospheric). 75 is the temperatures during combustion.
This implies that the released heat Fiiregeyerity (Q) is directly
proportional to 7.

In sound propagation, sound velocity is significantly impact
by the temperature of transmission medium. In an ideal gas
medium, the relationship between the sound speed v and
temperature satisfies v = /yRT/M [14], where R is the
molar gas constant with a value of 8.3145 J/mol, and ~
represents the specific heat ratio of the gas, which is associated
with its molecular structure. 7" is the absolute temperature. M
is the molar mass of the gas. Let z = \/yR/M is a constant

value for a particular gas medium, therefore v = v %,

where v is the speed of sound at a reference temperature 7y,
and T is the current temperature. Given v = d/7, where d
is the travelling distance of sound, and 7 is the corresponding
delay, substituting the expression for the speed of sound, we

= ky/L where k = ©WTo

Ty vo
infer that 7 is inversely proportional to /7%, which implies
that as Fz'resevm-ty(Q) increases, 7 decreases, and vice versa.

obtain T is a constant. We can

III. SYSTEM DESIGN
A. Overview

Fig. 4 depicts the system overview of UltraFlame. Ultra-
Flame consists of three modules. CIR estimator sequentially
measures CIR between the emitted and received ZC sequences.
The estimated CIR effectively captures and characterizes the
variation in both energy and delay of the transmitted sound
waves impacted by flames, which involve rich information
about angle and distance of the fire source. Then, data
augmentation module enlarges the dataset using a typically
designed data augmentation scheme to relieve the burden of
heavy manual data collection. The fire source localization
module initially extracts key features from the augmented CIR
for precise positioning. Subsequently, beamforming technique
is applied toward the angle obtained from the localization
process, facilitating further assessment of fire severity. Such
design yields important insights into the fire’s intensity and
its potential spread.

B. Mining Distance and Angle Information in CIR

Fire occurrence can be detected using sound absorption
characteristics, which, however, may miss the information on
distance and angle of the fire source. Intuitively, fire appearing
at any location between UltraFlame and wall tends to have the
same energy absorption pattern in CIR since sound traverses
the fire rather than being reflected from it. Nevertheless, in our
work, we have a key observation that sound penetrating fire
source at different locations manifests subtle but detectable

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on July 29,2025 at 07:10:08 UTC from IEEE Xplore. Restrictions apply.



~ ~
/' Ultraplame  \ Wallz
\ S -135° /,§D1

Reference e
ot OR

f WlWalh kT AL

Fig. 5. Indoor fire source localization
scenario.

S

S

-~
)

g

>;20 2%
=
)
a3

Delay (ms)

0

w
=

'
S

5 10 15 20 25 5 10 15 20 25
Time (seconds) Time (seconds)

(a) CIR plot at —90°. (b) CIR plot at —120°.

— 51
200

: . 150
100

sriansssnsl B

5 10 15 20 25 5 0 15 20 25
Time (seconds) Time (seconds)

(c) CIR plot at —135°. (d) CIR plot at —150°.

250

200

150

100

Delay (ms)
Delay (ms)

50
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discrepancies in sound energy absorption, which can still be
captured by CIR if properly handled.

To validate this phenomenon, we conduct the following
series of experiments. We place UltraFlame in the center of
a room with a size of 7m x 6m x 3m, as shown in Fig. 5.
The speaker of UltraFlame is oriented perpendicularly to the
concrete walll. We assign this direction to —90° as reference
angle. We first place a fire source in the Line-of-Sight (LOS)
path between UltraFlame and walll, which is 2m away to the
UltraFlame (i.e., R1). The measured CIR when fire is burning
at R1 is regarded as reference CIR, as shown in Fig. 6(a).
The captured CIR measurements exhibit clear sound energy
absorption pattern near 20ms delay, which is exactly the sound
waves penetrating fire and being reflected back from the walll
(i.e., 3.5 meters distance between UltraFlame and walll). We
then position the fire source at different distances and angles to
UltraFlame and measure the CIR for each scenario. Insightful
and rich information about fire source location can be observed
in CIR plot. We explain it as follows in detail.

1) Fire source at different angles to UltraFlame: In this
section, we delve into how different angles of fire to our
UltraFlame impact the CIR measurements. In this scenario,
we maintain a distance of 1m between the fire source and
UltraFlame, while only varying the angle of the fire source
relative to UltraFlame, such as —90°, —120°, —135°, and
—150°, respectively, as R1, B2, C2, D2 shown in Fig. 5. The

fire source is placed on a thin metal surface to mitigate the
reflection from the container. The corresponding CIR plots are
depicted in Fig. 6.

From Fig. 6(b) to Fig. 6(d), we concentrate on two dominant
CIR patterns. The first one lies in the CIR pattern around
20ms, which characterizes the LOS path between UltraFlame
and walll. The second one focuses on CIR measurements
near 35ms, which exhibit the sound reflected by corner.
Interestingly, as the angle of fire moves away from the LOS
path (i.e., from —90° to —150°) between the device and the
walll, the dominance of CIR pattern near 20ms gradually
diminishes. This is because sound waves propagating along
LOS between UltraFlame and walll are less affected by the
fire combustion with increasing angles. On the contrary, the
CIR pattern near 3bms is increasingly pronounced since fire
poses more remarkable effects on these parts of paths, yielding
a more conspicuous energy absorption pattern. We note that
the LOS transmission between speaker and microphone is
not effectively removed at these three angles because energy
variations on LOS transmission and caused by fire share
the same level. To sum up, as the angle between fire and
UltraFlame shifts, the sound propagation paths influenced by
the flame undergo corresponding changes, which confirms that
differences in the fire’s angles indeed result in varying CIR
measurements.

2) Fire source at different distances to UltraFlame: We
then investigate the effects of different fire source distances.
Typically, we study the impacts under three cases:

Case 1: We ignite the fire very close to UltraFlame, for
instance, at a distance of 0.3m (i.e., Al). The measured CIR
is shown in Fig. 7(a). The CIR plot exhibits a clear energy
absorption pattern near the LOS transmission (i.e., at the
top of CIR plot with lowest delays) between the speaker
and microphone compared with that of RI. In this case,
the LOS path is significantly affected by the heat released
by combustion, incurring distinct absorption pattern in sound
energy. Surprisingly, the signals reflected by walll (i.e., near
20ms delay) are absent throughout the experiment. This is
because most of sound energy attenuates when penetrating
fire, being reflected by wall and penetrating fire again back
to the microphone. In other word, a fire close to UltraFlame
absorbs the vast majority of sound energy, only exhibiting
energy variation near LOS path. We keep the distance of fire at
0.3m while varying the angle to our UltraFlame (i.e., location
B1, CI, and D1), the measured CIR plots show a similar
pattern. Therefore, this pattern can serve as an indicator for
specifying the approximate fire source location that close to
the acoustic device.

Case 2: When the fire source appears very close to walll,
i.e., A2 in Fig. 5, part of the heated region generated by
fire combustion is blocked by walll, resulting in a rela-
tively smaller high-temperature field compared with that at
R1. As sound waves propagate penetrating this temperature
field, the measured sound energy across different delays is
more concentrated, as depicted in Fig. 7(b), manifesting more
cohesive CIR patterns than R1 in Fig. 6(a). More importantly,
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Fig. 7. Fire source at different distances.

the CIR variation in LOS path between the speaker and
microphone is absent throughout the experiment, indicating
a dominance of CIR variation caused by fire combustion
over LOS transmission. Such unique patterns provide us with
position information when the fire occurs near the wall.

Case 3: We measure the CIR when a fire is ignited near
a room corrner, i.e., A3 and B3 in Fig. 5, as depicted in
Fig. 7(c). The LOS path between speaker and microphone is
effectively canceled. CIR measurements at approximate 22ms
delay manifest a relatively consistent energy pattern, which
characterize the sound waves directly reflected by walll. On
the contrary, an unstable energy absorption pattern exhibited
at 35ms delay indicates the signal path reflected in the corner
and affected by the fire>. We demonstrate that sound waves
encountering complex interactions with the walls and flames
near the corner engender rich multipaths, which are influenced
by fire. Such a complicated interaction between sound waves
and fire yields more chaotic energy absorption pattern, which
profiles the information of fire source location near a corner.

The above three cases validates that CIR measurements
contain rich information about distances of fire source, even
if fire is incapable of reflecting the sound waves. Note that
multipath in CIR provides valuable characteristics, such as
reflections from walls and corners, which is essential for
precise fire source localization.

3) Enlarging dataset using data augmentation: Our exten-
sive experiments demonstrate a distinct nonlinear correlation
between fire source location and CIR measurements. Such a
nonlinear relationship prompts us to apply a deep learning
framework to automatically extract these intricate nonlinear
features and locating the fire source. However, neural networks
demand a large-scale dataset covering diverse variations of
CIR measured at different fire locations to guarantee accuracy
and robustness. Data augmentation artificially increases the
diversity and volume of training datasets, thereby enhancing
the generalization capability of machine learning models and
reducing overfitting. However, conventional data augmentation
schemes, such as rotation, flipping, and affine of images cannot
be applied to augment CIR measurements of flames, as they
disrupt the temporal and spatial characteristics of CIR. Con-
sidering temporal dimension of CIR measurements, the CIR is
measured frame by frame, precluding data augmentation along

>The propagation distance is approximately 12m, which is geometrically
twice than the distances between our UltraFlame and the corner.

the X-axis, which distorts the temporal correlation of CIR
measurements. Similarly, in terms of the spatial dimension,
the CIR at different delays are strongly correlated with im-
portant location-related spatial information, including angles
and distances. Therefore, potential transformations along the
Y-axis of CIR plot may inherently be infeasible as well.

Different from classic data augmentation schemes, we ded-
icatedly devise the following data augmentation method to
effectively expand the dataset. Specifically, we randomly vary
the values of CIR measurements impacted by fire in a CIR plot.
This is because complicated and incomplete fire combustion
results in stochastic sound energy absorption, inducing random
variations in CIR measurements. Note that we shift each
fire-impacted CIR measurement within a certain range to
somewhat retain its original intensity. The augmentation is
performed on a per-frame basis (CIR trace), and the aug-
mentation rate is empirically determined based on practical
requirements. We utilize the augmented dataset in conjunction
with the original dataset as inputs for the classifier.

C. Mining Fire Severity Information in CIR

After successfully locating the fire source, we utilize beam-
forming technique to amplify signals from the identified angle
of the ignition point, while eliminating interference from other
directions. We then specifically extract information related to
the severity of the fire from this angle. Recall that as the
temperature elevates, the sound speed increases, resulting in a
shorter propagation delay. Fire combustion, including even its
early stages characterized merely by smoke, releases a large
amount of heat, which engenders a high-temperature region
near the flame. Such a high-temperature region accelerates the
propagation of sound waves when encountering and penetrat-
ing it. Since fire combustion involves a series of complicated
chemical and physical interactions, the distribution of temper-
ature as well as the shape of this generated high temperature
region is nonuniform, thereby yielding multiple sound copies
with different delays.

1) Real-time fire severity monitoring: This complex region,
however, can be quantitatively assessed via CIR, as depicted
in Fig. 8. We observe multiple CIR measurements manifesting
diverse delays near 3ms when igniting a fire after 4s at an
equivalent distance of 0.5m from UltraFlame. Based on this
observation, our core idea is that sound propagation can be
more significantly affected by a larger high temperature region
resulting in wider Delay Range. Therefore, we introduce a
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novel metric, termed ADelay of CIR measurements charac-

terizing the range of sound propagation delay between smallest

and largest CIR measurements in CIR plot. A Delay estimates

the diameter of the high temperature region caused by fire
combustion, and therefore assesses fire severity.

To validate our observation, we conduct an experiment by
maintaining the position of fire while manually varying the
flame size. In our experiment, we manipulate the size of
the high-temperature region by adjusting the valve of a gas
stove. Specifically, we rigorously control the valve to ensure
three distinct flame sizes. Fig. 9 illustrates CIR measurements
under these three different flame sizes. The ADelay for
small, medium, and large flames gradually increases, which
covers the propagation delays of sound waves ranging 1.2ms,
1.8ms, and 2.5ms, respectively. As fire size increases, the high
temperature field enlarges, resulting in a gradual expansion of
ADelay. Such a key metric to measure fire severity offers us
the potential to effectively predict the fire spreading tendency.

2) Tracking fire spreading tendency: In this validation, we
gradually alter the valve of the gas stove from minimum to
maximum in 3s to track the fire spreading tendency. The
captured CIR measurements are illustrated in Fig. 10. From
the moment of igniting fuels at the 1s to 4s, A Delay expands
from the initial 1ms to 6.5ms. Our experiment convinces
that ADelay can serve as an effective indicator for assessing
fire severity, which is exploited to predict the fire spreading
tendency. We employ a Sliding Window (SW) approach to
monitor, as the yellow rectangle in Fig. 10. The window length
is set to 5 (i.e., 5 CIR traces) to meet real-time requirements,
and the sliding step of the SW is empirically set to 3. Utilizing
the SW approach enables real-time measuring of A Delay, and
thus predicting the fire spreading tendency.

D. Classifier

We employ the Vi-T model to extract features from CIR
measurements for fire source localization and severity as-
sessment [5]. The self-attention mechanism of Vi-T captures
global context and analyzes CIR more effectively than tra-
ditional CNNs and RNNs, rendering it particularly suitable
for identifying fire sources and combustion patterns with CIR
pattern while enhancing training efficiency. For fire source
localization, we partition the room into cubes and ignite fires
at their centers. We augment CIR measurements to classify
fire severity based on flame size. Vi-T processes consecutive
CIR traces to output 3-D coordinates and fire size. Its self-
attention mechanism autonomously selects relevant CIR pat-

Small

Time (seconds)

ADelay

Middle

Time (seconds)

Fig. 9. Quantifying fire severity by analyzing sound wave delays in high- Fig. 10. Real-time capturing of fire

severity.

terns, ensuring accurate positional information and effective
fire assessment, even in the presence of varying reflections.

Therefore, we configure the Vi-T as follows. The input
of our classifier is a CIR plot with a size of H x W,
where H is height and W is width, respectively. Convolution
is performed with 768 kernels to extract features from the
image, which are then flattened to yield a 196 x 768 matrix.
Through concatenation, this matrix is combined with a 1 x 768
classification feature vector to form a 197 x 768 matrix,
followed by positional encoding. After passing through Extract
Class Token layers, a 1 x 768 classification feature vector is
extracted. This vector is then input into two sets of MLP Head
layer, producing two probability vectors of sizes 1 x M and
1 x N, representing the classification ranks of fire locations
and fire severity levels, respectively. The final classification
results correspond to the category with the highest probability
in each respective probability vector.

IV. EXPERIMENTS AND EVALUATION
A. Experiment setup

1) Hardware: The applied hardware in UltraFlame is
shown in Fig. 11(a), which consists of a commercial speaker
and circular microphone array. For precise acoustic signal
transmission, UltraFlame uses Google AIY Voice Kit 2.0, inte-
grating a 3W speaker controlled by a lightweight Raspberry Pi
Zero. For effective signal reception, we apply the ReSpeaker
6-Mic Circular Array Kit with a 48k H z sampling rate, which
accurately captures audio frames in the inaudible band. The
cartridge stove used in the experiment is shown in Fig. 11(b).

2) Data Collection: We set the root ZC sequence with
parameters © = 64 and N,. = 127, and interpolate it to a
length of N/ZC = 2048, which covers 7.25m in indoor envi-
ronments. Data collection is conducted in three different rooms
of varying layouts, with sizes of 4m x6mx3m, 5mx5mx3m,
Tm x 8m x 3m, respectively, as illustrated in Fig. 11(c)-
11(e). UltraFlame is placed close to the wall while fire sources
are positioned at different distances and angles to UltraFlame
within a 0° ~ 180° area in front of UltraFlame. We manually
collect 6,000 CIR plots, which are augmented by 100x for
fire source localization, severity assessment, and fire spreading
tendency prediction. In addition to the controlled setting using
a gas stove, we conduct an experiment to test UltraFlame’s
capability in tracking the tendency of fire spread. We apply a
thin metal container with a size of 0.6m x 0.2m x 0.01m to
mitigate container reflections. To achieve a flame size increase,
we separately place four alcohol swipes straightly at intervals
of 0.2m in the container interconnected by a piece of thread
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soaked in alcohol. The swipes are sequentially ignited via
thread, representing a gradually fire expanding tendency.

3) Model Training and Testing: We take a less than 2s CIR
plot as the input of the model, which covers 40 CIR traces.
Therefore, the size of each input CIR plot is 40 x 2048. The
Vi-T model is trained and evaluated using PyTorch on a laptop
equipped with a 32 GB memory, a 12th Generation Intel Core
i7-12700H CPU, and an NVIDIA GeForce RTX 3060 Laptop
GPU. The dataset is evenly split, allocating 50% for training
and 50% for testing, respectively. We adopt a 10-fold cross-
validation scheme for evaluation. The size of our trained model
is less than 10M. Our test dataset includes data from other
unseen rooms to meet the practical detection needs.

4) Benchmark: We select the state-of-the-art acoustic fire
detection approach, HearFire [33], as the benchmark for
comparison. We use the same hardware and experimental
settings as in the HearFire. We employ the same fuel and
transmission signals as in HearFire to detect fire occurrence
since fire source localization and fire severity assessment are
not available in HearFire. We also compare the processing
delay between UltraFlame and HearFire.

B. Evaluation

1) Overall System Performance: We comprehensively eval-
uate the overall performance of UltraFlame. The training and
testing dataset comprises both manually collected data and
augmented data from three rooms. UltraFlame achieves an
outstanding accuracy of 99.6% in detecting the occurrence of
fire as shown in Fig. 12, with a false alarm rate of lower than
0.5%. This is due to the distinct feature of energy absorption
when fire appears. Such an accurate value adequately ensures
the reliability of the following tasks.

As illustrated in Fig. 13, over 94% of fires with unknown
locations are accurately categorized within the same cube
across all three rooms, indicating that 94% of the localization
results achieve an error of less than 0.8m. We note that this
localization error can be further reduced by subdividing the
space into smaller cubes and employing more advanced neural
networks. In our evaluation, the size of the partitioned cube is
1m x 1m x 1m, which is adequate for effective fire monitoring
in indoor environments. CIR measurements when fire source
appears at a different location indeed effectively provide rich
angle and distance information. The overall efficacy of the
system in accurately distinguishing fire severity is depicted
in Fig. 14. The average accuracy of assessing small, medium

and large flame achieves 96.9%, with all flame sizes exceeding
96.5%, demonstrating its ability to assess fire severity.

2) Performance of Localization with Different Angles and
Distances: We randomly select 8§ out of 15 cubes with
different distances and angles to the acoustic device in Room
B to ignite the fire, manually measuring 300 CIR plots at
cube and applying a data augmentation with a factor of 100.
Fig. 15 illustrates the confusion matrix of these 8 locations,
which are labeled as L1, L2...L8. UltraFlame achieves an
average accuracy of 98% in distinguishing these 8 positions,
with the accuracy for each location exceeding 96%. Such a
promising performance certifies the capability of sound waves
in localizing fire sources, even without reflection from the fire.

3) Performance of Fire Severity Assessment at Different
Angles and Distances: We estimate the fire severity at different
locations. We manually define the size of fire to small, medium
and large implemented with different volumes of fuel, which
generate corresponding sizes of the heated region. We ignite
different fuels with varying volumes and collect the CIR
measurements spanning across different distances and angles
relative to UltraFlame. The augmentation is performed 100x.

Fig. 16 illustrates the estimation accuracy for fire severity
over 15 locations with different angles and distances. Fire
severity can be accurately assessed with an accuracy of ex-
ceeding 94%. Due to multipath effect as well as rich temporal
and spatial information in CIR measurements affected by
fire combustion, different angles and distances pose limited
influence on fire severity assessment. Our evaluation confirms
that sound wave inherently involves the potential to effectively
monitor the fire severity. The accuracy in fire severity deter-
mination at 15 different positions is consistently above 94.2%.

4) Performance on Different Heights: We evaluate whether
varying the height of the ignition source impacts the perfor-
mance of UltraFlame. To this end, we randomly select 6 loca-
tions in Room C and alter the heights of fire sources at each
location: 0.5m, 1m, and 1.5m, respectively. Consequently, this
results in 18 distinct ignition points. At each point, we measure
200 CIR plots, followed by applying a 100x augmentation.

We first estimate whether the height of fire will impact
its localization accuracy. The result in Fig. 17 manifests
that all points at different heights achieve an localization
precision of over 94%. Different heights do not influence the
performance of UltraFlam positioning the fire sources. This is
because high temperature region incurred by fire combustion
imposes significant impact on sound propagation, which can
be effectively captured by CIR.
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TABLE I TABLE 1T
PERFORMANCE ON DIFFERENT CLASSIFIERS. EXECUTION TIME.
Classifier APL BPL WPL APS BPS WPS CIR Calculation Fire Sensing
CNN 93.2% 97.8% 91.5% 88.5% 91.7% 84.8% Frame D(l::)n Fire Occurrence Fire(l;:che
RNN 94.0% 97.1% 93.3% 86.4% 89.5% 79.6% Detection Conversion CIR Detection Localization Fire Severity
Vi-T 95.7%  100% 943% 96.9% 983% 94.2% 280 15 28 14 27 46

We then assess fire severity at different heights. Fig. 18
demonstrates that an average accuracy of over 95% is achieved
when determining fire severity at different heights for all
ignition points. Such a reliable result benefits from our pro-
posed effective metric characterizing the diameter of high-
temperature region generated by fire combustion.

5) Performance on Fire Severity Prediction: We define
three fire spreading tendencies, which are diminishing, stable
and intensifying. To control fire spreading tendency, we place a
thin metal lid on the top of container, which is slowly moved
forward and backward using a fine metal wire to open and
close the container. The flame size generated by fuel burned
in the container will increase and decrease correspondingly.
For each tendency, we measure 1000 CIR plots.

Fig. 19 plots the confusion matrix of these three tendencies.
The average accuracy for fire severity prediction achieves
96.7% with each accuracy of tendency exceeding 96%. Due to
complicated combustion reaction as well as irregular heated re-
gion, 2.4% and 2.2% of diminishing fire are wrongly predicted
as intensifying and stable, respectively. Overall, UltraFlame
can reliably predict the fire spreading tendency due to variation
of delay range of sound waves.

6) Performance on Different Classifiers: To demonstrate
the superiority of applying Vi-T, we evaluate UltraFlame using
three different classifiers, including CNN, RNN and Vi-T. We
use the same convolutional kernel size and number of layers
to focus on performance on fire monitoring. Table I illustrates
the system performance using different classifiers. APL, BPL
and WPL represent Average Performance, Best Performance,

Worst Performance of Fire Localization, respectively; APS,
BPS, and WPS represent Average Performance, Best Perfor-
mance and Worst Performance of Fire Severity, respectively.
Our Vi-T model outperforms the other two models in all
six indicators, especially in fire severity assessment. Its self-
attention mechanism, large-scale pretraining, and ability to
handle sequential data contribute to its superior performance.

7) Execution Time: Table II presents the processing time for
each step in UltraFlame. In particular, frame detection is only
performed once at the beginning when the first sound fame
is received, although requiring 280ms. Processing delay for
measuring the fire-affected CIR is 28ms. Surprisingly, the total
time for the three fire sensing tasks is only 87ms. Fire severity
assessment takes the longest detection time since it is more
complicated than other two tasks, yielding a 46s to output an
assessment result. Consequently, the overall processing delay
for UltraFlame remains below 0.5s.

8) Comparison with State-of-the-art Work: We use
HearFire [33] as a benchmark, which similarly relies on acous-
tic signals for fire detection. In Table III, APO, APL, APS and
APP represents Average Performance of Fire Occurrence, Fire
Source Localization, Fire Severity, and its Prediction, respec-
tively. UltraFlame achieves a detection accuracy of 99.6% for
fire occurrence, surpassing HearFire by 3.6% due to the use of
the outstanding Vi-T classifier. Additionally, UltraFlame can
fulfill fire source localization and severity assessment tasks,
which are not available in HearFire. Moreover, it enables
faster fire detection than HearFire, establishing itself as a more
powerful acoustic-based fire sensing system.
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TABLE III
COMPARISON WITH STATE-OF-THE-ART WORK.

APO APL APS APP Detection Time
. Not Not Not .
HearFire 96.0% Supported  Supported  Supported <07s
UltraFlame  99.6% 95.7% 96.9% 96.7% <0.5s

V. RELATED WORK
A. Smoke Based Fire Detection

Smoke detectors have been widely applied to prevent fire
disaster in our daily life [6], [8], [25], [29]. Smoke sensors can
detect the smoke particles generated by fire [6], [25] and issue
an alarm when the level of smoke exceeds a threshold. When
a smoke level can be calculated by the photoelectric smoke
sensor, which measures the difference in light dispersion with
and without smoke using an optical device [8]. Another smoke
detector applies an ionization chamber and a source of ionizing
radiation to detect smoke when smoke particles enter the
ionization chamber [29]. However, environmental impurities
such as dirt, dust particles, and other air particles are prone to
result in false alarms in photoelectric sensors, while ionization
smoke detectors may present inhalation risks to humans due
to the emission of radioactive materials during combustion.

B. Vision Based Fire Detection

Image-based fire detection systems utilize cameras to mon-
itor fires and incorporates deep learning technologies for
fire detection [4], [13], [20], [23], [40]. Celik et al. [40]
employ the YCbCr color space to detect the flame, which
effectively separates brightness from chrominance. Kozeki
etal. [20] investigate the ability of a thermal camera system
for detecting and monitoring burning fires and devise suitable
image processing algorithms to extract combustion features.
Chen et al. [4] showcase various aspects of fire detection using
a fusion approach, including flame movement, color traces,
and an algorithm for detecting flame flickering. However, the
effectiveness of vision-based approaches for fire monitoring
is limited by their reliance on unobstructed LOS paths [13],
[22]. In addition, long time camera surveillance in indoor
environment may raise privacy issues [9], [10].

C. Radio Frequency Based Fire Detection

Recent studies apply RF sensing to fulfill fire detection
tasks [16], [26], [39]. Wi-Fire can detect fire in indoor en-
vironments using Wi-Fi sensing [39]. The intuition is that fire
inflammation will impact the wireless channel, which can be
revealed in the amplitude and phase of Channel State Infor-
mation (CSI). However, access to CSI is unavailable for most
of Wi-Fi network interface cards (NIC). Signals at the 28GHz
frequency band can be potentially applied for fire detection
due to the outstanding propagation properties and large sensing
range and coverage [16]. Unfortunately, emitting signals with
28GHz requires specialized devices, which restrain their wide
use. RFire enables through-wall fire detection using millimeter
wave technology, and applies deep learning framework to
extract instances of fire [26]. Nevertheless, RFire entails a
24s high-delay 3D spatial sweep for localizing the fire source,

which is hard to satisfy real-time requirement. However, RF-
based methods either necessitate expensive specialized devices
or are inaccessible in remote rural areas.

D. Acoustic Based Fire Detection

Using acoustic signals to detect fire can be roughly divided
into two categories: passive [21], [24] and proactive fire sens-
ing [3], [33], [38]. In passive fire sensing, recent works merely
utilize microphones to passively capturing the sound produced
during flame combustion. By analyzing the frequency and
amplitude of the captured sound, the fire source location
and fire severity can be identified [24]. Different materials
during combustion result in unique acoustic emission (AE),
pyrolysis and burning phases, which can be exploited to infer
the presence of a fire event [21]. However, passive schemes
are vulnerable to interference from ambient environmental
noise [21], [24]. Proactive acoustic fire sensing detects the
fire occurrence by actively emitting a predefined sound frame
to probe the acoustic channel impact by fire combustion,
therefore it is insensitive to environmental noises. Acoustic-
Thermo sends an acoustic pulse to calculate air temperature
based on sound speed. However, it suffers from precise system
initialization by measuring the round trip distance to a pre-
deployed barrier before use [38]. AcuTe+ applies commodity
speaker and microphone to monitor the ambient temperature
with a measurable range of only from 5°C — 38°C [3].
HearFire combines acoustic energy absorption and sound
speed variation caused by fire burning to accurately identify
fire occurrence indoors [33]. Recent proactive acoustic-based
approaches focus on detecting fires. Unlike these, UltraFlame
provides fire source localization and severity assessment, Sig-
nificantly advancing emergency response design.

VI. CONCLUSION

We introduce UltraFlame, an indoor fire monitoring system
that effectively addresses practical challenges associated with
capturing reliable fire location patterns without any reflection
from flame. Furthermore, we introduce an innovative metric
to correlate the fire severity with sound propagation delays for
precise fire severity assessment. Extensive experiments demon-
strate that 94% of the localization results have an error of
less than 0.8m. Additionally, UltraFlame achieves an accuracy
of 96.9% in fire severity assessment in indoor environment.
UltraFlame offers real-time fire monitoring, contributing to
timely prediction and efficient rescue operations. It is a huge
step forward for modern fire rescue systems, which aims to
bridge the gap of existing fire monitoring systems and integrate
embodied intelligence for enhanced adaptive responses.
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