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Abstract—In indoor fire rescue, swift and precise fire source
localization and fire severity assessment are pivotal for firefighting
strategic planning and casualty evacuation. However, existing
solutions primarily focus on detecting fire presence, which do
not offer insights into fire’s localization and severity. In this
paper, we propose UltraFlame, an accurate, user-friendly, and
timely system for pinpointing fire sources and assessing fire
severity based on acoustic sensing, which bridges significant gaps
in fire safety and response. UltraFlame consists of a collocated
commodity speaker and microphone pair, sensing fire by emitting
inaudible sound waves. We conduct an in-depth investigation
of sound propagation impacted by fire combustion, providing
physically interpretable data for deep learning framework and
enabling fire source localization even without any sound reflection
by fire. We dedicatedly establish a correlation between fire
severity and sound propagation delays, which serves as an
effective indicator for estimating the heated region. Finally, an
appropriate deep learning framework is employed to effectively
extract temporal and spatial features from channel measurement.
Extensive experiments demonstrate that 94% of the localization
results have an error of less than 0.8m. Additionally, UltraFlame
achieves an accuracy of 96.9% in fire severity assessment across
diverse setups, providing real-time and reliable monitoring.

Index Terms—Acoustic sensing, channel impulse response, fire
source localization, fire severity assessment

I. INTRODUCTION

Motivation. In indoor fire rescue operations, every minute

counts and every life matters. Merely detecting the presence

of a flame is far from sufficient to meet the requirements of

modern fire rescue systems, as shown in Fig. 1. In high-density

residential buildings, the lack of precise fire localization can

lead to mass panic, posing difficulties for firefighters in quickly

and effectively enacting fire rescue strategies and planning

evacuation routes. Transportation hubs require rapid fire source

localization to ensure passenger safety and control the fire

spreading. Moreover, industrial hazardous materials demand

for immediate and accurate fire severity estimation to prevent

disasters. Power supply rooms, educational institutions, data

centers, and other indoor facilities all face unique challenges,

and simply knowing the occurrence of a fire event is not

enough to address these issues. Furthermore, simply detecting

the fire at the room level is insufficient for automatic firefight-

ing robots to extinguish fires quickly and precisely at specific

locations.

Prior works and limitations. Existing fire monitoring

approaches are limited to mere detection of fire presence,

which commonly rely on smoke detectors [6], [8], [25], [29],

such as photoelectric sensors [8], ionization sensors [29], and

Yanwen Wang is the corresponding author.

(a) Real-time monitor-
ing and dynamic plan-
ning.

(b) Embodied intelli-
gence robots for pre-
cise fire extinguishing.

(c) Accurate assess-
ment of fire severity.

Fig. 1. Fire incidents and rescue responses. (Generated by ChatGPT 4.0)

gas sensor [8], enabling early warnings and timely detection

of smoke. However, these sensors only trigger alarms when

certain thresholds are exceeded, which lacks the information

of fire’s location and severity. Deploying multiple infrared

sensors enables fire source localization, while still struggling

with assessing fire severity and facing challenges when the

fire sources are obstructed [1]. In vision-based methods, it

is challenging to locate fire source and assess fire severity if

cameras are contaminated or obscured by smoke particles [23].

Wireless signal-based fire monitoring methods have attracted

attention in recent years [11], [12], [16]–[18], [26], [37], [39].

Recent researchers employ Radio Frequency (RF) technology

to detect the presence of smoke. The intuition is that smoke

particles impact the RF signal propagation paths, causing

changes in signal strength [16], [26], [39]. However, the RF-

based method entails long processing delay to output a fire’s

location [26], which is hard to satisfy real-time requirement

of fire monitoring systems.

Recent years have witnessed a surge of acoustic-based

sensing technologies [3], [21], [24], [33]–[36], [38]. In fire

monitoring, microphones have been employed to passively

capture sound generated by flame combustion [21], [24]. By

analyzing the frequency and amplitude of the sound during

combustion, it is possible to determine fire source location and

assess its severity. However, passive fire monitoring only using

microphones is susceptible to environmental noises [21]. Dif-

ferent from passive acoustic sensing techniques, active probing

fire is superior in stronger controllability, inaudibility, and

signal processing advantages, potentially enhancing detection

accuracy and reliability. AcousticThermo proactively emits an

acoustic pulse signal to measure air temperature by calculat-

ing sound propagation speed [38]. However, AcousticThermo

entails precise system initialization to obtain the round-trip

distance of sound signal before use, which is difficult or even
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Fig. 2. CIR shown in a 3-D matrix. Fig. 3. CIR plot.

impossible to satisfy in practice. HearFire combines acoustic

absorption and sound speed variations to detect early stage of

fire, i.e., smoke, in indoor environments [33]. However, recent

active acoustic-based works primarily focus on fire presence

detection and do not investigate fire source localization and

severity assessment, which are extremely important for emer-

gency response to reduce casualties and property losses.

Challenges. In this paper, we propose UltraFlame, an

acoustic-based fire monitoring system devoting to fill the gap

of existing fire monitoring system. However, implementing

such two crucial functionalities of fire monitoring using proac-

tively emitted acoustic signals presents enormous challenges.

The fundamental challenge of localizing fire sources involves

how to measure acoustic signals affected by flames and deter-

mining the source’s position. Since fire does not reflect sound

waves [2], current methods to detect fire presence rely on

acoustic signals that penetrate flames and reflect from objects

behind the fire [33]. These methods compare the emitted

and residual sound energy after being absorbed by the fire,

allowing for accurate detection of the presence of flames.

However, intuitively, sound waves that penetrate fires do not

provide information about the location of the fire source.

Regardless of where the fire source is positioned between

the acoustic devices and the reflecting object, the energy

absorption pattern penetrating fire is consistent, indicating only

the amount of energy lost during the round trip. Therefore,

achieving fire source localization using acoustic signals is a

nontrivial task.

The second challenge lies in how to establish a reliable

correlation between fire severity and sound propagation. Fire

combustion is a highly dynamic process involving multiple

complicated factors, including the nature of the combustible

material, flame shape, temperature, etc. These factors interact

with each other and release a great amount of heat, forming

an irregular and unstable heated region near the flame, making

it challenging to accurately measure the fire severity. While

sound energy absorption property can effectively detect the

event of fire occurrence, it may lack the ability to correlate

with fire severity due to its randomness characteristic caused

by complex and incomplete fire combustion.

Solutions. To address the first challenge, we conduct an

in-depth study of the multi-path propagation characteristics

of acoustic waves in indoor environments when fire source

appears at different locations, and synthetically design a deep

learning framework to position fire sources. Fortunately, al-
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Fig. 4. Overview of UltraFlame.

though fire itself does not reflect any acoustic signal, the

sound penetrating fire at different locations still encompasses

reliable and detectable patterns in terms of sound absorption in

indoor environments. Specifically, we observe distinct sound

energy propagation patterns when fire is located at different

distances and angles to the acoustic device, which significantly

affects the acoustic channel measurements across multiple

paths, resulting in varying sound intensities. Our extensive

experiments demonstrate that fire sources located at different

places, such as close to acoustic device, close to walls, and

near a corner of a room, exhibit explicit and detectable nonlin-

ear sound propagation characteristics. This in-depth analysis

lays a solid foundation for accurate and interpretable data,

facilitating us to apply a deep learning framework to establish

a definite correlation between channel measurement and fire

source positions. Our solution validates the feasibility of fire

source localization using acoustic signals. We deliberately

design a Vision Transformer (Vi-T) model to achieve accurate

fire source localization.

To assess fire severity, we conduct a comprehensive analysis

on sound propagation properties and dedicatedly quantify the

relationship between the diameter of region where the heat

is released by fire and the sound propagation delays. Such

quantification is based on the fact that sound speed increases

with elevating temperature. Our observation reveals that a

larger flame generates a more extensive high-temperature area.

As such, sound propagation can be more easily affected by the

fire, resulting in a wider transmission delay range in channel

measurement. Employing this correlation enables timely mon-

itoring of fire impacted region, providing prompt feedback on

the fire severity and accurate prediction of spreading tendency.

Contributions. In a nutshell, our main contributions are

summarized as follows:

• We bridge the gap of existing fire detection system by

implementing two crucial functionalities in fire monitor-

ing systems. To the best of our knowledge, UltraFlame is

the first system utilizing acoustic signals for pinpointing

fire sources and assessing fire severity.

• Unlike existing methods that using signal reflection for
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object localization, we prove that sound penetration still

plays a crucial role in accurately pinpointing the fire

source location. Moreover, we develop an innovative

acoustic sensing metric to effectively assess fire severity.

• We implement a prototype of UltraFlame using low-

cost commodity acoustic devices. Our experiments show

that 94% of the localization results have an error of

less than 0.8m. Additionally, UltraFlame demonstrates

an accuracy of 96.9% in assessing fire severity in indoor

environments1.

II. BACKGROUND

A. Fire Event Presence Detection Using Acoustic Signals
Existing acoustic-based approach, named HearFire [33],

integrates a commercially available speaker and a microphone

array, continuously emitting a predefined audio frame to sense

the fire presence. The intuition is that sound energy can be

absorbed by fire and sound speed increases with the elevated

temperature. Zadoff-Chu (ZC) sequence is applied to probe

the channel due to its high autocorrelation property, and cross-

correlation based channel impulse response (CIR) estimation

scheme is employed to measure the channel influenced by fire

combustion.
CIR has been widely applied in acoustic sensing [15], [19],

[27], [28], [30]–[32], enabling the granular segmentation of

multipath signals into discrete bins or taps, each of which

correlates to a specific range of propagation delays, as illus-

trated in Fig. 2. CIR h[τ ] consists of complex values, profiling

a comprehensive characterization of the attenuation of signals

with different delays τ over time t. By isolating the bins that

are exclusively affected by the targets of interest, it is possible

to monitor the target by investigating fluctuations in signal

delay and attenuation.
To achieve room-scale sensing while simultaneously main-

taining the inaudibility of the emitted signal, HearFire exploits

frequency domain interpolation scheme [27] on ZC sequence

to extend its length and applies a dedicated parameter config-

uration scheme to maintain reliable sensing. The commodity

speaker unceasingly emits the interpolated ZC sequence, part

of whose energy will be absorbed by the heat released by fire.

Such a sound energy absorption pattern can be captured by

CIR measurement. Hearfire then removes the environmental

interference and extracts the merely fire-impacted CIR using

differential method on two adjacently received CIR traces.

Fig. 3 shows the CIR measurements when fire is burning,

which displays random variations in amplitude after igniting

the fire, revealing a distinct pattern of signal absorption due to

incomplete combustion. While effectively detecting fire event

occurrence, the functionalities of fire source localization and

severity assessment are not investigated in HearFire.
B. Fire Severity

Fire severity can be jointly characterized by variation in the

energy released and the size of flame during the combustion

process [7], which can be represented as:

1Experiments were conducted with the presence of professional firefighters
and were approved by the Institutional Review Board.

FireSeverity(Q) ∝ nCpT2 (1)

where Q denotes the released heat of the flame, n is amount

of substance, which represents the quantity of entities (such

as molecules, atoms, or ions) contained in a substance. Cp is

the specific heat capacity of a substance at constant pressure

(i.e., atmospheric). T2 is the temperatures during combustion.

This implies that the released heat FireSeverity(Q) is directly

proportional to T2.

In sound propagation, sound velocity is significantly impact

by the temperature of transmission medium. In an ideal gas

medium, the relationship between the sound speed v and

temperature satisfies v =
√
γRT/M [14], where R is the

molar gas constant with a value of 8.3145 J/mol, and γ
represents the specific heat ratio of the gas, which is associated

with its molecular structure. T is the absolute temperature. M
is the molar mass of the gas. Let z =

√
γR/M is a constant

value for a particular gas medium, therefore v = v0

√
T2

T0
,

where v0 is the speed of sound at a reference temperature T0,

and T2 is the current temperature. Given v = d/τ , where d
is the travelling distance of sound, and τ is the corresponding

delay, substituting the expression for the speed of sound, we

obtain τ = k
√

1
T2

where k = d
√
T0

v0
is a constant. We can

infer that τ is inversely proportional to
√
T2, which implies

that as FireSeverity(Q) increases, τ decreases, and vice versa.

III. SYSTEM DESIGN

A. Overview

Fig. 4 depicts the system overview of UltraFlame. Ultra-

Flame consists of three modules. CIR estimator sequentially

measures CIR between the emitted and received ZC sequences.

The estimated CIR effectively captures and characterizes the

variation in both energy and delay of the transmitted sound

waves impacted by flames, which involve rich information

about angle and distance of the fire source. Then, data

augmentation module enlarges the dataset using a typically

designed data augmentation scheme to relieve the burden of

heavy manual data collection. The fire source localization

module initially extracts key features from the augmented CIR

for precise positioning. Subsequently, beamforming technique

is applied toward the angle obtained from the localization

process, facilitating further assessment of fire severity. Such

design yields important insights into the fire’s intensity and

its potential spread.

B. Mining Distance and Angle Information in CIR

Fire occurrence can be detected using sound absorption

characteristics, which, however, may miss the information on

distance and angle of the fire source. Intuitively, fire appearing

at any location between UltraFlame and wall tends to have the

same energy absorption pattern in CIR since sound traverses

the fire rather than being reflected from it. Nevertheless, in our

work, we have a key observation that sound penetrating fire

source at different locations manifests subtle but detectable
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Fig. 5. Indoor fire source localization
scenario.
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(a) CIR plot at −90◦.
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(b) CIR plot at −120◦.
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(c) CIR plot at −135◦.
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(d) CIR plot at −150◦.

Fig. 6. Fire source at different angles.

discrepancies in sound energy absorption, which can still be

captured by CIR if properly handled.

To validate this phenomenon, we conduct the following

series of experiments. We place UltraFlame in the center of

a room with a size of 7m × 6m × 3m, as shown in Fig. 5.

The speaker of UltraFlame is oriented perpendicularly to the

concrete wall1. We assign this direction to −90◦ as reference

angle. We first place a fire source in the Line-of-Sight (LOS)

path between UltraFlame and wall1, which is 2m away to the

UltraFlame (i.e., R1). The measured CIR when fire is burning

at R1 is regarded as reference CIR, as shown in Fig. 6(a).

The captured CIR measurements exhibit clear sound energy

absorption pattern near 20ms delay, which is exactly the sound

waves penetrating fire and being reflected back from the wall1

(i.e., 3.5 meters distance between UltraFlame and wall1). We

then position the fire source at different distances and angles to

UltraFlame and measure the CIR for each scenario. Insightful

and rich information about fire source location can be observed

in CIR plot. We explain it as follows in detail.

1) Fire source at different angles to UltraFlame: In this

section, we delve into how different angles of fire to our

UltraFlame impact the CIR measurements. In this scenario,

we maintain a distance of 1m between the fire source and

UltraFlame, while only varying the angle of the fire source

relative to UltraFlame, such as −90◦, −120◦, −135◦, and

−150◦, respectively, as R1, B2, C2, D2 shown in Fig. 5. The

fire source is placed on a thin metal surface to mitigate the

reflection from the container. The corresponding CIR plots are

depicted in Fig. 6.

From Fig. 6(b) to Fig. 6(d), we concentrate on two dominant

CIR patterns. The first one lies in the CIR pattern around

20ms, which characterizes the LOS path between UltraFlame

and wall1. The second one focuses on CIR measurements

near 35ms, which exhibit the sound reflected by corner.

Interestingly, as the angle of fire moves away from the LOS

path (i.e., from −90◦ to −150◦) between the device and the

wall1, the dominance of CIR pattern near 20ms gradually

diminishes. This is because sound waves propagating along

LOS between UltraFlame and wall1 are less affected by the

fire combustion with increasing angles. On the contrary, the

CIR pattern near 35ms is increasingly pronounced since fire

poses more remarkable effects on these parts of paths, yielding

a more conspicuous energy absorption pattern. We note that

the LOS transmission between speaker and microphone is

not effectively removed at these three angles because energy

variations on LOS transmission and caused by fire share

the same level. To sum up, as the angle between fire and

UltraFlame shifts, the sound propagation paths influenced by

the flame undergo corresponding changes, which confirms that

differences in the fire’s angles indeed result in varying CIR

measurements.

2) Fire source at different distances to UltraFlame: We

then investigate the effects of different fire source distances.

Typically, we study the impacts under three cases:

Case 1: We ignite the fire very close to UltraFlame, for

instance, at a distance of 0.3m (i.e., A1). The measured CIR

is shown in Fig. 7(a). The CIR plot exhibits a clear energy

absorption pattern near the LOS transmission (i.e., at the

top of CIR plot with lowest delays) between the speaker

and microphone compared with that of R1. In this case,

the LOS path is significantly affected by the heat released

by combustion, incurring distinct absorption pattern in sound

energy. Surprisingly, the signals reflected by wall1 (i.e., near

20ms delay) are absent throughout the experiment. This is

because most of sound energy attenuates when penetrating

fire, being reflected by wall and penetrating fire again back

to the microphone. In other word, a fire close to UltraFlame

absorbs the vast majority of sound energy, only exhibiting

energy variation near LOS path. We keep the distance of fire at

0.3m while varying the angle to our UltraFlame (i.e., location

B1, C1, and D1), the measured CIR plots show a similar

pattern. Therefore, this pattern can serve as an indicator for

specifying the approximate fire source location that close to

the acoustic device.

Case 2: When the fire source appears very close to wall1,

i.e., A2 in Fig. 5, part of the heated region generated by

fire combustion is blocked by wall1, resulting in a rela-

tively smaller high-temperature field compared with that at

R1. As sound waves propagate penetrating this temperature

field, the measured sound energy across different delays is

more concentrated, as depicted in Fig. 7(b), manifesting more

cohesive CIR patterns than R1 in Fig. 6(a). More importantly,
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(a) CIR plot when the fire is near
UltraFlame.
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(b) CIR plot when the fire is near
concrete wall.
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(c) CIR plot when the fire is in a
corner.

Fig. 7. Fire source at different distances.

the CIR variation in LOS path between the speaker and

microphone is absent throughout the experiment, indicating

a dominance of CIR variation caused by fire combustion

over LOS transmission. Such unique patterns provide us with

position information when the fire occurs near the wall.

Case 3: We measure the CIR when a fire is ignited near

a room corrner, i.e., A3 and B3 in Fig. 5, as depicted in

Fig. 7(c). The LOS path between speaker and microphone is

effectively canceled. CIR measurements at approximate 22ms

delay manifest a relatively consistent energy pattern, which

characterize the sound waves directly reflected by wall1. On

the contrary, an unstable energy absorption pattern exhibited

at 35ms delay indicates the signal path reflected in the corner

and affected by the fire2. We demonstrate that sound waves

encountering complex interactions with the walls and flames

near the corner engender rich multipaths, which are influenced

by fire. Such a complicated interaction between sound waves

and fire yields more chaotic energy absorption pattern, which

profiles the information of fire source location near a corner.

The above three cases validates that CIR measurements

contain rich information about distances of fire source, even

if fire is incapable of reflecting the sound waves. Note that

multipath in CIR provides valuable characteristics, such as

reflections from walls and corners, which is essential for

precise fire source localization.

3) Enlarging dataset using data augmentation: Our exten-

sive experiments demonstrate a distinct nonlinear correlation

between fire source location and CIR measurements. Such a

nonlinear relationship prompts us to apply a deep learning

framework to automatically extract these intricate nonlinear

features and locating the fire source. However, neural networks

demand a large-scale dataset covering diverse variations of

CIR measured at different fire locations to guarantee accuracy

and robustness. Data augmentation artificially increases the

diversity and volume of training datasets, thereby enhancing

the generalization capability of machine learning models and

reducing overfitting. However, conventional data augmentation

schemes, such as rotation, flipping, and affine of images cannot

be applied to augment CIR measurements of flames, as they

disrupt the temporal and spatial characteristics of CIR. Con-

sidering temporal dimension of CIR measurements, the CIR is

measured frame by frame, precluding data augmentation along

2The propagation distance is approximately 12m, which is geometrically
twice than the distances between our UltraFlame and the corner.

the X-axis, which distorts the temporal correlation of CIR

measurements. Similarly, in terms of the spatial dimension,

the CIR at different delays are strongly correlated with im-

portant location-related spatial information, including angles

and distances. Therefore, potential transformations along the

Y-axis of CIR plot may inherently be infeasible as well.

Different from classic data augmentation schemes, we ded-

icatedly devise the following data augmentation method to

effectively expand the dataset. Specifically, we randomly vary

the values of CIR measurements impacted by fire in a CIR plot.

This is because complicated and incomplete fire combustion

results in stochastic sound energy absorption, inducing random

variations in CIR measurements. Note that we shift each

fire-impacted CIR measurement within a certain range to

somewhat retain its original intensity. The augmentation is

performed on a per-frame basis (CIR trace), and the aug-

mentation rate is empirically determined based on practical

requirements. We utilize the augmented dataset in conjunction

with the original dataset as inputs for the classifier.

C. Mining Fire Severity Information in CIR

After successfully locating the fire source, we utilize beam-

forming technique to amplify signals from the identified angle

of the ignition point, while eliminating interference from other

directions. We then specifically extract information related to

the severity of the fire from this angle. Recall that as the

temperature elevates, the sound speed increases, resulting in a

shorter propagation delay. Fire combustion, including even its

early stages characterized merely by smoke, releases a large

amount of heat, which engenders a high-temperature region

near the flame. Such a high-temperature region accelerates the

propagation of sound waves when encountering and penetrat-

ing it. Since fire combustion involves a series of complicated

chemical and physical interactions, the distribution of temper-

ature as well as the shape of this generated high temperature

region is nonuniform, thereby yielding multiple sound copies

with different delays.
1) Real-time fire severity monitoring: This complex region,

however, can be quantitatively assessed via CIR, as depicted

in Fig. 8. We observe multiple CIR measurements manifesting

diverse delays near 3ms when igniting a fire after 4s at an

equivalent distance of 0.5m from UltraFlame. Based on this

observation, our core idea is that sound propagation can be

more significantly affected by a larger high temperature region

resulting in wider Delay Range. Therefore, we introduce a
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Fig. 8. Steady fire measurement.

Middle Small LargeMiddle MiddleSmall

Fig. 9. Quantifying fire severity by analyzing sound wave delays in high-
temperature fields.

Fig. 10. Real-time capturing of fire
severity.

novel metric, termed ΔDelay of CIR measurements charac-

terizing the range of sound propagation delay between smallest

and largest CIR measurements in CIR plot. ΔDelay estimates

the diameter of the high temperature region caused by fire

combustion, and therefore assesses fire severity.

To validate our observation, we conduct an experiment by

maintaining the position of fire while manually varying the

flame size. In our experiment, we manipulate the size of

the high-temperature region by adjusting the valve of a gas

stove. Specifically, we rigorously control the valve to ensure

three distinct flame sizes. Fig. 9 illustrates CIR measurements

under these three different flame sizes. The ΔDelay for

small, medium, and large flames gradually increases, which

covers the propagation delays of sound waves ranging 1.2ms,

1.8ms, and 2.5ms, respectively. As fire size increases, the high

temperature field enlarges, resulting in a gradual expansion of

ΔDelay. Such a key metric to measure fire severity offers us

the potential to effectively predict the fire spreading tendency.

2) Tracking fire spreading tendency: In this validation, we

gradually alter the valve of the gas stove from minimum to

maximum in 3s to track the fire spreading tendency. The

captured CIR measurements are illustrated in Fig. 10. From

the moment of igniting fuels at the 1s to 4s, ΔDelay expands

from the initial 1ms to 6.5ms. Our experiment convinces

that ΔDelay can serve as an effective indicator for assessing

fire severity, which is exploited to predict the fire spreading

tendency. We employ a Sliding Window (SW) approach to

monitor, as the yellow rectangle in Fig. 10. The window length

is set to 5 (i.e., 5 CIR traces) to meet real-time requirements,

and the sliding step of the SW is empirically set to 3. Utilizing

the SW approach enables real-time measuring of ΔDelay, and

thus predicting the fire spreading tendency.

D. Classifier

We employ the Vi-T model to extract features from CIR

measurements for fire source localization and severity as-

sessment [5]. The self-attention mechanism of Vi-T captures

global context and analyzes CIR more effectively than tra-

ditional CNNs and RNNs, rendering it particularly suitable

for identifying fire sources and combustion patterns with CIR

pattern while enhancing training efficiency. For fire source

localization, we partition the room into cubes and ignite fires

at their centers. We augment CIR measurements to classify

fire severity based on flame size. Vi-T processes consecutive

CIR traces to output 3-D coordinates and fire size. Its self-

attention mechanism autonomously selects relevant CIR pat-

terns, ensuring accurate positional information and effective

fire assessment, even in the presence of varying reflections.

Therefore, we configure the Vi-T as follows. The input

of our classifier is a CIR plot with a size of H × W ,

where H is height and W is width, respectively. Convolution

is performed with 768 kernels to extract features from the

image, which are then flattened to yield a 196 × 768 matrix.

Through concatenation, this matrix is combined with a 1×768
classification feature vector to form a 197 × 768 matrix,

followed by positional encoding. After passing through Extract

Class Token layers, a 1 × 768 classification feature vector is

extracted. This vector is then input into two sets of MLP Head

layer, producing two probability vectors of sizes 1 × M and

1 × N , representing the classification ranks of fire locations

and fire severity levels, respectively. The final classification

results correspond to the category with the highest probability

in each respective probability vector.

IV. EXPERIMENTS AND EVALUATION

A. Experiment setup

1) Hardware: The applied hardware in UltraFlame is

shown in Fig. 11(a), which consists of a commercial speaker

and circular microphone array. For precise acoustic signal

transmission, UltraFlame uses Google AIY Voice Kit 2.0, inte-

grating a 3W speaker controlled by a lightweight Raspberry Pi

Zero. For effective signal reception, we apply the ReSpeaker

6-Mic Circular Array Kit with a 48kHz sampling rate, which

accurately captures audio frames in the inaudible band. The

cartridge stove used in the experiment is shown in Fig. 11(b).

2) Data Collection: We set the root ZC sequence with

parameters u = 64 and Nzc = 127, and interpolate it to a

length of N
′
ZC = 2048, which covers 7.25m in indoor envi-

ronments. Data collection is conducted in three different rooms

of varying layouts, with sizes of 4m×6m×3m, 5m×5m×3m,

7m × 8m × 3m, respectively, as illustrated in Fig. 11(c)-

11(e). UltraFlame is placed close to the wall while fire sources

are positioned at different distances and angles to UltraFlame

within a 0◦ ∼ 180◦ area in front of UltraFlame. We manually

collect 6,000 CIR plots, which are augmented by 100× for

fire source localization, severity assessment, and fire spreading

tendency prediction. In addition to the controlled setting using

a gas stove, we conduct an experiment to test UltraFlame’s

capability in tracking the tendency of fire spread. We apply a

thin metal container with a size of 0.6m× 0.2m× 0.01m to

mitigate container reflections. To achieve a flame size increase,

we separately place four alcohol swipes straightly at intervals

of 0.2m in the container interconnected by a piece of thread
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(a) Hardware of UltraFlame. (b) Gas stove.

6m

4m

(c) Room A.
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(d) Room B.

7m

8m

(e) Room C.

Fig. 11. Commercial speaker and microphone applied in UltraFlame and three rooms.

soaked in alcohol. The swipes are sequentially ignited via

thread, representing a gradually fire expanding tendency.

3) Model Training and Testing: We take a less than 2s CIR

plot as the input of the model, which covers 40 CIR traces.

Therefore, the size of each input CIR plot is 40× 2048. The

Vi-T model is trained and evaluated using PyTorch on a laptop

equipped with a 32 GB memory, a 12th Generation Intel Core

i7-12700H CPU, and an NVIDIA GeForce RTX 3060 Laptop

GPU. The dataset is evenly split, allocating 50% for training

and 50% for testing, respectively. We adopt a 10-fold cross-

validation scheme for evaluation. The size of our trained model

is less than 10M . Our test dataset includes data from other

unseen rooms to meet the practical detection needs.

4) Benchmark: We select the state-of-the-art acoustic fire

detection approach, HearFire [33], as the benchmark for

comparison. We use the same hardware and experimental

settings as in the HearFire. We employ the same fuel and

transmission signals as in HearFire to detect fire occurrence

since fire source localization and fire severity assessment are

not available in HearFire. We also compare the processing

delay between UltraFlame and HearFire.

B. Evaluation

1) Overall System Performance: We comprehensively eval-

uate the overall performance of UltraFlame. The training and

testing dataset comprises both manually collected data and

augmented data from three rooms. UltraFlame achieves an

outstanding accuracy of 99.6% in detecting the occurrence of

fire as shown in Fig. 12, with a false alarm rate of lower than

0.5%. This is due to the distinct feature of energy absorption

when fire appears. Such an accurate value adequately ensures

the reliability of the following tasks.

As illustrated in Fig. 13, over 94% of fires with unknown

locations are accurately categorized within the same cube

across all three rooms, indicating that 94% of the localization

results achieve an error of less than 0.8m. We note that this

localization error can be further reduced by subdividing the

space into smaller cubes and employing more advanced neural

networks. In our evaluation, the size of the partitioned cube is

1m×1m×1m, which is adequate for effective fire monitoring

in indoor environments. CIR measurements when fire source

appears at a different location indeed effectively provide rich

angle and distance information. The overall efficacy of the

system in accurately distinguishing fire severity is depicted

in Fig. 14. The average accuracy of assessing small, medium

and large flame achieves 96.9%, with all flame sizes exceeding

96.5%, demonstrating its ability to assess fire severity.
2) Performance of Localization with Different Angles and

Distances: We randomly select 8 out of 15 cubes with

different distances and angles to the acoustic device in Room

B to ignite the fire, manually measuring 300 CIR plots at

cube and applying a data augmentation with a factor of 100.

Fig. 15 illustrates the confusion matrix of these 8 locations,

which are labeled as L1, L2...L8. UltraFlame achieves an

average accuracy of 98% in distinguishing these 8 positions,

with the accuracy for each location exceeding 96%. Such a

promising performance certifies the capability of sound waves

in localizing fire sources, even without reflection from the fire.
3) Performance of Fire Severity Assessment at Different

Angles and Distances: We estimate the fire severity at different

locations. We manually define the size of fire to small, medium

and large implemented with different volumes of fuel, which

generate corresponding sizes of the heated region. We ignite

different fuels with varying volumes and collect the CIR

measurements spanning across different distances and angles

relative to UltraFlame. The augmentation is performed 100×.
Fig. 16 illustrates the estimation accuracy for fire severity

over 15 locations with different angles and distances. Fire

severity can be accurately assessed with an accuracy of ex-

ceeding 94%. Due to multipath effect as well as rich temporal

and spatial information in CIR measurements affected by

fire combustion, different angles and distances pose limited

influence on fire severity assessment. Our evaluation confirms

that sound wave inherently involves the potential to effectively

monitor the fire severity. The accuracy in fire severity deter-

mination at 15 different positions is consistently above 94.2%.
4) Performance on Different Heights: We evaluate whether

varying the height of the ignition source impacts the perfor-

mance of UltraFlame. To this end, we randomly select 6 loca-

tions in Room C and alter the heights of fire sources at each

location: 0.5m, 1m, and 1.5m, respectively. Consequently, this

results in 18 distinct ignition points. At each point, we measure

200 CIR plots, followed by applying a 100× augmentation.
We first estimate whether the height of fire will impact

its localization accuracy. The result in Fig. 17 manifests

that all points at different heights achieve an localization

precision of over 94%. Different heights do not influence the

performance of UltraFlam positioning the fire sources. This is

because high temperature region incurred by fire combustion

imposes significant impact on sound propagation, which can

be effectively captured by CIR.
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severity assessment.
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Fig. 18. Performance of fire severity
assessment at different heights.
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Fig. 19. Performance on fire severity
prediction.

TABLE I
PERFORMANCE ON DIFFERENT CLASSIFIERS.

Classifier APL BPL WPL APS BPS WPS
CNN 93.2% 97.8% 91.5% 88.5% 91.7% 84.8%
RNN 94.0% 97.1% 93.3% 86.4% 89.5% 79.6%
Vi-T 95.7% 100% 94.3% 96.9% 98.3% 94.2%

We then assess fire severity at different heights. Fig. 18

demonstrates that an average accuracy of over 95% is achieved

when determining fire severity at different heights for all

ignition points. Such a reliable result benefits from our pro-

posed effective metric characterizing the diameter of high-

temperature region generated by fire combustion.

5) Performance on Fire Severity Prediction: We define

three fire spreading tendencies, which are diminishing, stable

and intensifying. To control fire spreading tendency, we place a

thin metal lid on the top of container, which is slowly moved

forward and backward using a fine metal wire to open and

close the container. The flame size generated by fuel burned

in the container will increase and decrease correspondingly.

For each tendency, we measure 1000 CIR plots.

Fig. 19 plots the confusion matrix of these three tendencies.

The average accuracy for fire severity prediction achieves

96.7% with each accuracy of tendency exceeding 96%. Due to

complicated combustion reaction as well as irregular heated re-

gion, 2.4% and 2.2% of diminishing fire are wrongly predicted

as intensifying and stable, respectively. Overall, UltraFlame

can reliably predict the fire spreading tendency due to variation

of delay range of sound waves.

6) Performance on Different Classifiers: To demonstrate

the superiority of applying Vi-T, we evaluate UltraFlame using

three different classifiers, including CNN, RNN and Vi-T. We

use the same convolutional kernel size and number of layers

to focus on performance on fire monitoring. Table I illustrates

the system performance using different classifiers. APL, BPL

and WPL represent Average Performance, Best Performance,

TABLE II
EXECUTION TIME.

CIR Calculation
(ms)

Fire Sensing
(ms)

Frame
Detection

Down
Conversion CIR Fire Occurrence

Detection
Fire Source
Localization Fire Severity

280 15 28 14 27 46

Worst Performance of Fire Localization, respectively; APS,

BPS, and WPS represent Average Performance, Best Perfor-

mance and Worst Performance of Fire Severity, respectively.

Our Vi-T model outperforms the other two models in all

six indicators, especially in fire severity assessment. Its self-

attention mechanism, large-scale pretraining, and ability to

handle sequential data contribute to its superior performance.

7) Execution Time: Table II presents the processing time for

each step in UltraFlame. In particular, frame detection is only

performed once at the beginning when the first sound fame

is received, although requiring 280ms. Processing delay for

measuring the fire-affected CIR is 28ms. Surprisingly, the total

time for the three fire sensing tasks is only 87ms. Fire severity

assessment takes the longest detection time since it is more

complicated than other two tasks, yielding a 46s to output an

assessment result. Consequently, the overall processing delay

for UltraFlame remains below 0.5s.

8) Comparison with State-of-the-art Work: We use

HearFire [33] as a benchmark, which similarly relies on acous-

tic signals for fire detection. In Table III, APO, APL, APS and

APP represents Average Performance of Fire Occurrence, Fire

Source Localization, Fire Severity, and its Prediction, respec-

tively. UltraFlame achieves a detection accuracy of 99.6% for

fire occurrence, surpassing HearFire by 3.6% due to the use of

the outstanding Vi-T classifier. Additionally, UltraFlame can

fulfill fire source localization and severity assessment tasks,

which are not available in HearFire. Moreover, it enables

faster fire detection than HearFire, establishing itself as a more

powerful acoustic-based fire sensing system.
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TABLE III
COMPARISON WITH STATE-OF-THE-ART WORK.

APO APL APS APP Detection Time

HearFire 96.0%
Not

Supported
Not

Supported
Not

Supported
<0.7s

UltraFlame 99.6% 95.7% 96.9% 96.7% <0.5s

V. RELATED WORK

A. Smoke Based Fire Detection

Smoke detectors have been widely applied to prevent fire

disaster in our daily life [6], [8], [25], [29]. Smoke sensors can

detect the smoke particles generated by fire [6], [25] and issue

an alarm when the level of smoke exceeds a threshold. When

a smoke level can be calculated by the photoelectric smoke

sensor, which measures the difference in light dispersion with

and without smoke using an optical device [8]. Another smoke

detector applies an ionization chamber and a source of ionizing

radiation to detect smoke when smoke particles enter the

ionization chamber [29]. However, environmental impurities

such as dirt, dust particles, and other air particles are prone to

result in false alarms in photoelectric sensors, while ionization

smoke detectors may present inhalation risks to humans due

to the emission of radioactive materials during combustion.

B. Vision Based Fire Detection

Image-based fire detection systems utilize cameras to mon-

itor fires and incorporates deep learning technologies for

fire detection [4], [13], [20], [23], [40]. Celik et al. [40]

employ the YCbCr color space to detect the flame, which

effectively separates brightness from chrominance. Kozeki

etal. [20] investigate the ability of a thermal camera system

for detecting and monitoring burning fires and devise suitable

image processing algorithms to extract combustion features.

Chen et al. [4] showcase various aspects of fire detection using

a fusion approach, including flame movement, color traces,

and an algorithm for detecting flame flickering. However, the

effectiveness of vision-based approaches for fire monitoring

is limited by their reliance on unobstructed LOS paths [13],

[22]. In addition, long time camera surveillance in indoor

environment may raise privacy issues [9], [10].

C. Radio Frequency Based Fire Detection

Recent studies apply RF sensing to fulfill fire detection

tasks [16], [26], [39]. Wi-Fire can detect fire in indoor en-

vironments using Wi-Fi sensing [39]. The intuition is that fire

inflammation will impact the wireless channel, which can be

revealed in the amplitude and phase of Channel State Infor-

mation (CSI). However, access to CSI is unavailable for most

of Wi-Fi network interface cards (NIC). Signals at the 28GHz

frequency band can be potentially applied for fire detection

due to the outstanding propagation properties and large sensing

range and coverage [16]. Unfortunately, emitting signals with

28GHz requires specialized devices, which restrain their wide

use. RFire enables through-wall fire detection using millimeter

wave technology, and applies deep learning framework to

extract instances of fire [26]. Nevertheless, RFire entails a

24s high-delay 3D spatial sweep for localizing the fire source,

which is hard to satisfy real-time requirement. However, RF-

based methods either necessitate expensive specialized devices

or are inaccessible in remote rural areas.

D. Acoustic Based Fire Detection

Using acoustic signals to detect fire can be roughly divided

into two categories: passive [21], [24] and proactive fire sens-

ing [3], [33], [38]. In passive fire sensing, recent works merely

utilize microphones to passively capturing the sound produced

during flame combustion. By analyzing the frequency and

amplitude of the captured sound, the fire source location

and fire severity can be identified [24]. Different materials

during combustion result in unique acoustic emission (AE),

pyrolysis and burning phases, which can be exploited to infer

the presence of a fire event [21]. However, passive schemes

are vulnerable to interference from ambient environmental

noise [21], [24]. Proactive acoustic fire sensing detects the

fire occurrence by actively emitting a predefined sound frame

to probe the acoustic channel impact by fire combustion,

therefore it is insensitive to environmental noises. Acoustic-

Thermo sends an acoustic pulse to calculate air temperature

based on sound speed. However, it suffers from precise system

initialization by measuring the round trip distance to a pre-

deployed barrier before use [38]. AcuTe+ applies commodity

speaker and microphone to monitor the ambient temperature

with a measurable range of only from 5◦C − 38◦C [3].

HearFire combines acoustic energy absorption and sound

speed variation caused by fire burning to accurately identify

fire occurrence indoors [33]. Recent proactive acoustic-based

approaches focus on detecting fires. Unlike these, UltraFlame

provides fire source localization and severity assessment, sig-

nificantly advancing emergency response design.

VI. CONCLUSION

We introduce UltraFlame, an indoor fire monitoring system

that effectively addresses practical challenges associated with

capturing reliable fire location patterns without any reflection

from flame. Furthermore, we introduce an innovative metric

to correlate the fire severity with sound propagation delays for

precise fire severity assessment. Extensive experiments demon-

strate that 94% of the localization results have an error of

less than 0.8m. Additionally, UltraFlame achieves an accuracy

of 96.9% in fire severity assessment in indoor environment.

UltraFlame offers real-time fire monitoring, contributing to

timely prediction and efficient rescue operations. It is a huge

step forward for modern fire rescue systems, which aims to

bridge the gap of existing fire monitoring systems and integrate

embodied intelligence for enhanced adaptive responses.
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