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Abstract—Liquid fraud has plagued people with huge health1

risks. Liquid fraud detection can help to reduce the risk of2

liquid hazards. However, existing systems that use biochemical3

tools or radio frequency signals for liquid sensing are either4

expensive, intrusive, or inconvenient for public use. In this arti-5

cle, we propose HearLiquid, a low-cost and nonintrusive liquid6

fraud detection system using commodity acoustic devices. Our7

insight comes from the fact that acoustic impedance of differ-8

ent liquids results in distinct absorption of the acoustic signal9

across different frequencies when it travels through the liquid.10

In specific, we extract the liquid’s acoustic absorption and trans-11

mission curve (AATC) over multiple frequencies of the acoustic12

signal for liquid fraud detection. However, accurately measuring13

the AATC faces multiple challenges. First, due to the hardware14

diversity and imperfection, different acoustic devices introduce15

diverse frequency responses, which brings significant deviations16

to AATCs of the same liquid. Second, different relative positions17

between acoustic devices and the liquid container result in vari-18

ations in the AATC, making the detection result inaccurate. To19

overcome these challenges, we first calibrate the AATC using a20

dedicated reference AATC to remove the effect of hardware diver-21

sity. To bear the variations in AATCs measured from different22

relative positions, we apply a well-orchestrated data augmen-23

tation technique to automatically generate sufficient AATCs for24

different positions using a small number of collected data. Finally,25

AATCs are used to train the liquid detection model. We conduct26

extensive experiments on many important liquid fraud cases and27

achieve liquid detection accuracy of 92%–97%.28

Index Terms—Acoustic absorption and transmission, acoustic29

signal, liquid fraud detection.30

I. INTRODUCTION31

L IQUID counterfeiting and adulteration have been32

jeopardizing human health for many decades. Fake33

liquids pose huge health risks and result in a large number of34

poisoning cases every year [1]. Common liquid fraud involves35

adulterating the expensive authentic liquid with cheaper and36

even harmful liquids or counterfeiting the authentic liquid37
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with a similar flavor but different components. Adulterated 38

and counterfeiting liquids are difficult to detect for consumers 39

since they are camouflaged with the same appearance like 40

the authentic one while only with the fake liquids inside. In 41

recent years, governments, industries, and academia have taken 42

great efforts to fight against liquid adulteration and counter- 43

feiting [2], [3]. However, consumers still suffer from high risks 44

owing to the lack of efficient and ubiquitous liquid detection 45

approaches. This drives researchers to keep investigating better 46

methods to detect liquid fraud. 47

Existing solutions for liquid detection can be mainly classi- 48

fied into four categories. The first category uses chemical and 49

chromatographic techniques [4], [5]. These techniques enable 50

precise detection of contaminants in the liquid. However, 51

chemical tools and chromatographic equipment are quite cum- 52

bersome and expensive. For example, one set of infrared 53

spectrometer could cost around U.S. $15 000. Besides, chem- 54

ical testings require direct contact with the liquid, which is 55

intrusive for sealed liquids. The second category refers to the 56

quasistatic electrical tomography (QET) technique [6], which 57

measures the dielectric constant and conductivity of the liq- 58

uid to detect flammable and explosive liquids in public areas. 59

However, current QET systems only detect whether a liquid is 60

flammable or explosive and are unable to detect liquid fraud. 61

The third category measures the surface tension of the liquid to 62

detect the liquid type using the tensiometer [7] or camera [8]. 63

Nevertheless, surface tension measurement inevitably requires 64

to open the liquid container. The fourth category leverages 65

radio frequency (RF) signals, e.g., RFID [9], [10] and ultraw- 66

ide band (UWB) radar[11], to measure liquid properties. The 67

intuition is that RF signals traveling through or reflected by 68

different liquids show different patterns of the signal param- 69

eter, e.g., the phase [12], [13] or Time-of-Flight (ToF) [11], 70

which can be used for liquid detection. However, RF-based 71

methods require specialized devices and cannot detect liquids 72

with metal containers since metals could affect the normal 73

transmission and communication of the RF signals, which lim- 74

its its usage scenarios. Considering the limitations of existing 75

liquid detection solutions, we ask a question: can we detect 76

liquid fraud in a cost-effective, nonintrusive, and ubiquitous 77

manner? 78

In this article, we propose HearLiquid, a liquid fraud detec- 79

tion system using commodity acoustic devices, i.e., the speaker 80

and microphone. To the best of our knowledge, HearLiquid is 81

the first to employ low-cost commodity acoustic devices for 82

liquid fraud detection. In HearLiquid, the speaker and micro- 83

phone are clung to the surface of the liquid container on each 84
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(a) (b)

Fig. 1. Demonstration of the HearLiquid system. (a) System setting.
(b) Applied scenario.

side horizontally, as shown in Fig. 1(a). The speaker emits85

the acoustic signal, and the microphone receives the acoustic86

signal traveling through the liquid. Our key finding is that the87

received acoustic signal can be used to detect liquid fraud. The88

insight comes from the fact that liquids with different compo-89

nents have different acoustic impedance, which determines the90

absorption of the acoustic signal [14], [15]. Thus, the acoustic91

signal traveling through the liquid has the potential to dis-92

tinguish the fake liquids from the authentic one by detecting93

the difference between the acoustic absorption patterns of the94

authentic and fake liquids. To measure the liquid’s absorption95

of the acoustic signal, we extract the acoustic absorption and96

transmission curve (AATC) from the received acoustic signal.97

AATC characterizes the remaining energy of the acoustic sig-98

nal over different frequencies after it travels through the liquid.99

In our work, the acoustic signal is dedicatedly generated and100

processed to extract the liquid’s AATC, and we manage to101

remove the effects of several nonnegligible practical factors102

on AATC extraction.103

Our system can detect whether a liquid is counterfeited or104

adulterated toward the authentic liquid product in real time, even105

without opening the liquid container. As shown in Fig. 1(b),106

authentic liquid manufacturers can use our system to extract107

liquid’s AATCs, store them in the server, and train the liquid108

fraud detection model. When there is a suspicious fake, its109

AATC will be measured using the system and sent to the110

model stored in the manufacturer’s server to get the detection111

result. We note that our system is not to replace existing liquid112

detection techniques (e.g., biochemical analysis and QET),113

but to provide a complementary technique that could allow114

consumers to detect liquid fraud in stores or at home.115

Accurately extracting the AATC from the received acoustic116

signal is not a trivial task. The key challenges arise from the fact117

that AATC can be affected by many practical factors, which118

could lead to inaccurate liquid detection results. The first factor119

comes from the diversity and imperfection of the commodity120

acoustic devices. The frequency responses of different speakers121

and microphones vary a lot, even for acoustic devices from the122

same manufacturer. When extracting the liquid’s AATC using123

different acoustic devices, the frequency response deviations124

result in inconsistent AATCs for the same liquid and conse-125

quently degrade the liquid detection accuracy. To tackle this126

problem, we propose a reference signal to remove the effect127

of acoustic devices’ frequency responses. In specific, we place128

the speaker and microphone close to each other without space129

between them to measure a reference signal. The reference130

signal is mainly determined by the acoustic devices’ frequency131

responses. Then, we extract the AATC of the acoustic signal 132

traveling through the liquid. The liquid’s AATC is decided by 133

the liquid and most importantly, the same devices’ frequency 134

responses. By canceling out the acoustic devices’ frequency 135

responses using the reference signal, the effect of hardware 136

diversity can be eliminated. 137

Another practical factor arises from the different relative 138

device-container positions. In practice, the relative positions 139

between the acoustic devices and liquid container may be hard 140

to keep the same when using the system at different times. 141

The position differences result in the change of multipath 142

acoustic signals traveling inside the liquid container, which 143

brings variations in the AATCs measured from the same liquid. 144

Our experimental results show that the AATC variations could 145

reduce the liquid detection accuracy. To address this problem, 146

intuitively, we can extract AATCs from as many as possible 147

positions to train the liquid detection model. However, it is 148

labor intensive to collect such a large amount of training data. 149

Thus, we adopt a data augmentation method to automatically 150

generate AATCs for different relative device-container posi- 151

tions. Based on our observation that the AATCs measured from 152

different positions follow the same distribution, we use the 153

variational autoencoder (VAE) to generate AATCs for different 154

positions using a small number of manually measured AATCs. 155

However, due to the frequency-selective effect of acoustic 156

signals, AATCs of the same liquid collected from different 157

device-container positions exhibit a special variation pattern. 158

As a result, multipath signals caused by the position differ- 159

ence could be strengthened or weakened on some frequencies. 160

Based on this key observation, instead of directly applying 161

existing VAE models, we improve the VAE by dedicatedly 162

designing a frequency-sensitive regularizer in the original VAE 163

loss function. Our AATC augmentation method can effectively 164

improve the detection accuracy in the face of the effect from 165

different device-container positions. 166

In this article, we make the following key contributions. 167

1) We propose HearLiquid, which, to the best of our knowl- 168

edge, is the first work that uses commodity acoustic 169

devices to detect liquid fraud. We extract a key feature 170

from the acoustic signal traveling through the liquid, i.e., 171

the AATC, for liquid fraud detection. 172

2) We perform an in-depth analysis of the practical fac- 173

tors that affect AATC extraction and tackle the corre- 174

sponding challenges, including the effects of acoustic 175

devices’ frequency responses and different relative 176

device-container positions, for accurate liquid fraud 177

detection. 178

3) We implement the HearLiquid system and evaluate its 179

performance with extensive experiments on various liq- 180

uid fraud cases. The experimental results show that 181

our system can achieve liquid fraud detection with an 182

average accuracy of around 92%–97%. 183

II. UNDERSTANDING THE ACOUSTIC ABSORPTION AND 184

TRANSMISSION IN LIQUIDS 185

A. Liquid’s Absorption of the Acoustic Signal 186

Our system employs the liquid’s absorption of acoustic 187

signal for liquid detection. The acoustic energy can be 188
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Fig. 2. Process of acoustic signal traveling through liquid.

Fig. 3. Liquid absorption of acoustic signal in different medium.

absorbed when the acoustic signal travels through the liquid.189

This is because the acoustic pressure facilitates the movement190

of liquid particles, resulting in internal frictions caused by191

the viscosity effect, which converts the acoustic energy into192

heat and induces the absorption of acoustic signal [14]. The193

absorbed energy reaches its maximum when the acoustic194

frequency matches the liquid’s natural frequency of vibration,195

i.e., the acoustic resonance phenomenon.1 We model the pro-196

cess of transmitting the acoustic signal from the speaker on197

the right-hand side of the liquid to the microphone on the left-198

hand side in Fig. 2. During this process, the acoustic signal199

sent by the speaker (Ws) first encounters the liquid container.200

Then, part of the signal is reflected by the container surface201

(Wr). Part of the signal is absorbed by the liquid and trans-202

formed to heat (Wa). Finally, part of the signal travels through203

the liquid and is received by the microphone (Wt). If we keep204

the sent signal Ws and container unchanged, the energy of the205

received signal (Wt) is mainly decided by how much signal is206

absorbed in the liquid, i.e., Wa.207

To show whether the acoustic signal can be affected by208

the liquid’s absorption, we perform an experiment to com-209

pare the acoustic absorption without and with the water filled210

in a plastic bottle. We place one pair of speaker and micro-211

phone on two sides of the liquid container as shown in Fig. 2.212

Then, we transmit the acoustic signal with equal power on213

multiple frequencies, i.e., 18, 18.1, . . . , 18.9, and 20 kHz.214

Then, we perform fast Fourier transformation (FFT) on the215

received signal and obtain the frequency-domain amplitude of216

each frequency. We keep all other settings unchanged dur-217

ing the experiment. As shown in Fig. 3, the amplitude of the218

empty bottle is higher than that of the bottle filled with water,219

showing that part of the sound energy is indeed absorbed by220

water.221

The absorbed energy Wa is governed by the acoustic222

impedance (Z) of the liquid and is a function of frequency (f ),223

i.e., Wa(f ) ∼ Zf [16]. The acoustic impedance is affected by224

the density of liquid (ρ) and the traveling speed (c) of acoustic225

1The acoustic resonance phenomenon will rarely happen for our case since
the resonant frequencies of liquids are around GHz-level, while the sound we
transmit is in the 18–20-kHz frequency band.

signal in the medium, i.e., Z = ρ · c [17]. Since the density 226

and sound speed are determined by liquid components, liq- 227

uids with different components can result in different acoustic 228

impedance. Thus, the absorbed energy Wa varies accordingly. 229

To investigate the effect of different liquid components on 230

the absorption of acoustic signal among multiple frequencies, 231

we conduct an experiment to compare the acoustic absorption 232

for two different liquids. We prepare water (density: 1.0 g/cc, 233

speed: 1482 m/s under 25 ◦C) and ethanol (density: 0.79 g/cc, 234

speed: 1159 m/s under 25 ◦C). Then, we fill the same amount 235

of water and ethanol in the same containers and remain other 236

settings unchanged. As shown in Fig. 3, the amplitudes of all 237

frequencies for the received acoustic signal traveling through 238

ethanol are larger than that through water, which shows that 239

more energy is absorbed by water due to its higher density 240

and sound speed than those of ethanol. In addition, amplitudes 241

of the received signal vary among different frequencies across 242

different liquids since Wa is affected by the sound frequency as 243

well. Therefore, the AATC, which is composed of amplitudes 244

over multiple frequencies of the acoustic signal after being 245

absorbed and transmitting through the liquid, can serve as a 246

good feature to differentiate different liquids. We will intro- 247

duce the design of Ws, Wt processing, and AATC extraction 248

in Section III. 249

B. Feasibility of Using AATC for Liquid Detection 250

To investigate the feasibility of using the AATC for dis- 251

tinguishing different liquids and liquid fraud detection, we 252

first conduct a set of preliminary experiments to observe the 253

AATCs for: 1) different kinds of liquids; 2) random mixtures 254

of one liquid with other fraudulent liquids; and 3) mixtures of 255

one liquid with different percentages of another fraudulent liq- 256

uid. For 1), we select three kinds of alcohol products (liquor, 257

ethanol, and isopropanol) and three kinds of cooking oil prod- 258

ucts (olive oil, canola oil, and soybean oil) in the market. 259

For 2), we regard the ethanol and isopropanol as the fraud- 260

ulent alcohol against the liquor and treat the canola oil and 261

soybean oil as the fraudulent oil against the olive oil. Then, 262

we randomly mix the liquor with ethanol and isopropanol, as 263

well as mixing the olive oil with canola oil and soybean oil, 264

respectively. 265

For 3), we mix the liquor and olive oil with different per- 266

centages of isopropanol (30% and 40%) and canola oil (20% 267

and 30%), respectively. For each of the original and mixed 268

liquids, we collect three traces of acoustic signal and extract 269

the AATC from each trace. During the experiment, we use 270

the same acoustic devices and container for all the liquids. 271

We emit the acoustic signal with 21 frequencies ranging from 272

18 to 20 kHz with an interval of 100 Hz. Fig. 4(a)–(c) depicts 273

the AATCs of the liquor, ethanol, isopropanol, and their mix- 274

tures.2 The AATCs of the olive oil, canola oil, soybean oil, 275

and their mixtures are shown in Fig. 4(d)–(f). From Fig. 4, we 276

have the following observations. 277

1) The AATCs of the same liquid exhibit similar patterns 278

and are stable across different times of measurements. 279

2“etha” and “isop” in Fig. 4(b) and (c) are the abbreviations of the ethanol
and isopropanol, respectively. (r) refers to the random mixture.
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(a) (d)

(b) (e)

(c) (f)

Fig. 4. AATCs of different authentic and adulterated liquids. (a) AATCs of
liquor, ethanol, and isopropanol. (b) AATCs of liquor mixed with etha and
isop. (c) AATCs of different % of isop mixed liquor. (d) AATCs of olive,
canola, and soybean oil. (e) AATCs of olive mixed with canola and soybean.
(f) AATCs of different % of canola mixed olive.

2) For different kinds of liquids, as shown in Fig. 4(a)280

and (d), the AATCs show distinct patterns, indicating that281

the AATC is potential to distinguish different liquids.282

3) As shown in Fig. 4(b) and (e), the AATCs of the authen-283

tic liquids are distinct from those of the fake liquids284

mixed with different fraudulent liquids. Furthermore, as285

depicted in Fig. 4(c) and (f), the AATCs of the authentic286

liquids compared with those of the fake liquids mixed287

with different percentages of the fraudulent liquid are288

different as well. This indicates that it is potential to289

use the AATC for detecting the fake liquids with differ-290

ent kinds and percentages of fraudulent liquids out of291

the authentic liquid.292

We also build a simple anomaly detection model using293

AATCs of the authentic liquid to obtain preliminary liquid294

detection results. We collect 125 AATCs from the authentic295

liquor and olive oil, respectively. Seventy five AATCs are used296

to train a one-class support vector machine (SVM) model for297

anomaly detection, and the left 50 AATCs are used for testing.298

We also collect 50 AATCs from each of the fraudulent and299

fake liquids. The accuracy for fake liquor and olive oil detec-300

tion reaches 86.5% and 84.7%, respectively. Our observations301

and experimental results show that it is feasible to use AATC302

for liquid fraud detection.303

C. Practical Factors for AATC Extraction304

Although AATC is useful for liquid fraud detection, in305

practice, AATC extraction is vulnerable to multiple practical306

(a) (b)

Fig. 5. Raw and calibrated AATCs of the same liquid using different speakers
and microphones. (a) AATCs of different acoustic devices. (b) Calibrated
AATCs in (a).

(a) (b) (c)

Fig. 6. Effect of relative device-container positions. (a) Signals in liquid.
(b) Acoustic shadow zone. (c) AATCs of different positions.

factors, which may significantly affect the liquid detection 307

result. The first factor comes from the hardware diversity 308

and imperfection of acoustic devices. The frequency responses 309

of commodity speakers and microphones vary a lot across 310

different frequencies, especially for the high-frequency band 311

above 17 kHz [18]. The acoustic devices’ frequency responses 312

could affect the frequency-domain amplitudes of the received 313

acoustic signal, resulting in inconsistent AATCs for the same 314

liquid. To show the effect of different acoustic devices on 315

AATC extraction, we use the same liquid but apply two dif- 316

ferent pairs of speakers and microphones to send and receive 317

the signal. In Fig. 5(a), the AATCs exhibit dissimilar patterns 318

when using different acoustic devices for the same liquid. 319

Hence, the AATC can be greatly affected by the frequency 320

responses of the acoustic devices. In Section III-D, we will 321

introduce our proposed AATC calibration method to remove 322

the effect of acoustic devices’ frequency responses. 323

The second factor lies in the different relative positions 324

between acoustic devices and liquid container. In practice, the 325

position of acoustic devices relative to the container may be 326

hard to keep the same when using the system at different times. 327

The change of the relative device-container position can affect 328

the AATC. This is because the acoustic signal traveling from 329

different parts of the container can result in different multipath 330

signals inside the container. Fig. 6(a) shows the propagation 331

paths of the acoustic signal in the liquid. The Line-of-Sight 332

(LoS) signal remains unchanged when the acoustic devices are 333

placed at different heights relative to the container. However, 334

multipath signals reflected by the liquid and container (dashed 335

lines) change along with different positions. Those changes 336

result in variations of the received acoustic signal, making the 337

AATCs measured from different positions vary for the same 338

liquid. To show the effect of different positions on the AATC, 339

we place the same acoustic devices at five different heights of 340
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Fig. 7. AATCs for three same bottles when empty, filled with authentic, and
fake wine.

the container. Then, we extract the AATCs for the olive oil341

at these five positions, as shown in Fig. 6(c). The AATCs342

for the same liquid exhibit variations across the frequency343

band under different relative positions. These variations in the344

AATC could lead to misdetection of the same liquid. We per-345

form preliminary experiments on detecting the authentic and346

fake olive oil with the same acoustic devices placed at differ-347

ent relative positions to the container. We use the authentic348

olive oil’s AATCs collected at one position to train the one-349

class SVM model. Then, the AATCs of the authentic and fake350

olive oil collected at another four positions are used for test-351

ing. The detection accuracy decreases to 71.3% with errors352

mainly coming from inaccurately detecting the authentic olive353

oil as the fake one. An intuitive solution to promote the accu-354

racy is to collect the acoustic signal from as many as relative355

device-container positions for the authentic liquid to train the356

anomaly detection model. However, it is labor intensive or357

even impractical to collect such a large number of data. Thus,358

an alternative method is needed to deal with the insufficient359

training data. We will elaborate on our data augmentation360

method in Section III-E.361

There are other factors that affect the AATC, including the362

container, incident angle of the acoustic signal, sound diffrac-363

tion, temperature, and humidity. First, the liquid container364

could affect the AATC because part of the sound energy is365

inevitably absorbed by containers. While after fully consid-366

ering the liquid fraud in practice that most fake liquids are367

filled into the same container and package as the authentic368

one to deceive consumers so that people cannot detect them369

by the appearance, we can have a reasonable assumption that370

the containers’ effect can be regarded as an identical constant371

for authentic and fake liquids. To investigate this assump-372

tion, we conduct experiments to compare AATCs for the same373

containers. First, we extract AATCs for three same plastic bot-374

tles filled with the same amount of authentic wine. Then, we375

mix all three bottles of authentic wine with the same amount376

of cheap ethanol as the fake wine and extract their AATCs.377

Finally, we empty the three bottles and extract their AATCs.378

As shown in Fig. 7, AATCs for the three bottles all share sim-379

ilar patterns when empty, filled with authentic wine, and filled380

with fake wine, respectively. This experiment result indicates381

that the container effect can be regarded as a constant fac-382

tor for the same containers and can be neglected during data383

collection.384

Second, the acoustic absorption can be affected by the385

acoustic signal’s incident angle [19]. This effect can be avoided386

by our system setting, in which the acoustic devices cling to387

Fig. 8. Overview of the HearLiquid system.

the container’s surface horizontally so that the incident angle 388

is fixed. Third, due to the sound diffraction effect, the acoustic 389

signal may bypass the container and continue to travel behind 390

it. The diffracted signal may be superimposed with the signal 391

traveling through the liquid. However, the signal diffraction 392

effect can be ignored if the acoustic signal’s wavelength is 393

smaller than the container [20]. In our case, the acoustic sig- 394

nal’s wavelength (around 1.8 cm) is much smaller than the size 395

of the liquid container (radius: 5–10 cm). Besides, the diffrac- 396

tion effect can be further mitigated in our system because the 397

microphone is deployed in the acoustic shadow zone [21], 398

as shown in Fig. 6(b). The diffracted signal is significantly 399

reduced, and the microphone mainly receives the signal travel- 400

ing through the liquid. Finally, the environmental temperature 401

and humidity can affect the acoustic absorption of the liquid 402

in a linear way [22], while normalizing the AATC can help 403

to alleviate such impacts. Hence, our work mainly focuses on 404

eliminating the effects of the diversity of acoustic devices and 405

different relative device-container positions. 406

III. SYSTEM DESIGN 407

A. System Overview 408

The overview of the HearLiquid system is shown in Fig. 8. 409

First, we generate the acoustic signal s(t) which is emitted by the 410

speaker. Then, the acoustic signal travels through the liquid and 411

is received by the microphone as r(t). Next, r(t) is preprocessed 412

and the raw AATC is extracted. Since the raw AATC includes the 413

effect of the acoustic devices’ frequency responses, we calibrate 414

the AATC using a designated reference signal. In addition, to 415

obtain AATCs for as many as different relative device-container 416

positions in an effective way, we automatically augment the 417

AATCs using a generative VAE model. Finally, AATCs are 418

used to train the liquid detection models. For liquid fraud 419

detection, an anomaly detection model is built using the AATCs 420

of the authentic liquid. We further extend the functionality of 421

HearLiquid to adulteration ratio recognition for fake liquids. To 422

this end, we build a classification model using the AATCs of all 423

the adulterated liquids to recognize the adulteration ratio. For 424

an unknown liquid, we can use the anomaly detection model 425

to detect whether the liquid is authentic or fake. Besides, the 426

classification model can be applied to recognize the adulteration 427

ratio for a fake liquid of interest. 428

B. Acoustic Signal Generation 429

The emitted acoustic signal s(t) is designed as the sum of 430

multiple sine waves with different frequencies, i.e., s(t) = 431∑n
i=1 Ai sin(2π fit), where Ai is the amplitude of each sine 432



6 IEEE INTERNET OF THINGS JOURNAL

(a) (b)

Fig. 9. Spectrum of generated acoustic signal and extracted AATC.
(a) Spectrum of s(t). (b) AATC of received signal.

wave, fi is the frequency, and n is the number of discrete433

frequencies. In our design, Ai is the same for all the sine waves.434

The discrete frequency fi is within the frequency band of435

[18 kHz, 20 kHz]. The reason for choosing the frequency band436

of [18 kHz, 20 kHz] lies in four aspects. First, the acoustic sig-437

nal in this frequency band is inaudible to most people, which438

does not disturb the users when using the system. Second,439

frequencies of most background noises in the environment, as440

well as the human voice, are lower than 18 kHz [23]. Then,441

the noises in the environment are removed with a high-pass442

filter. Third, the acoustic signal’s wavelength within such a443

frequency band is much smaller than the size of most contain-444

ers, which can alleviate the sound diffraction effect. Finally,445

the upper bound of the frequency for most commodity speak-446

ers and microphones is 20 kHz. The interval If between every447

two discrete frequencies is equal, and If determines the granu-448

larity of AATC. In Section IV-D2, we will discuss the effect of449

AATC granularity on the liquid detection performance. Finally,450

s(t) is saved as a WAV file, which is played by the speaker.451

Fig. 9(a) shows the spectrum of s(t) with 21 frequencies, i.e.,452

If = 100 Hz.453

C. Signal Preprocessing and AATC Extraction454

After emitting the acoustic signal from the speaker, the455

microphone receives the acoustic signal for 4 s with a sam-456

pling rate of 48 kHz. Then, a high-pass filter with a cutoff457

frequency of 18 kHz is applied on the received acoustic sig-458

nal r(t) to remove the background noises. Next, we perform459

FFT on the filtered signals. A Hamming window is applied on460

the filtered signal before FFT to reduce the frequency leakage.461

Then, we extract the frequency-domain amplitude at fi as R(fi).462

Finally, R(fi) is divided by the corresponding amplitude S(fi)463

in the spectrum of s(t) to obtain the AATC. AATC represents464

the ratio of the remaining acoustic signal’s energy over the465

emitted acoustic signal’s energy across multiple frequencies.466

In practice, the volume of the speaker and microphone may467

change. Thus, we normalize the AATC to the same scale of468

[0, 1] after AATC calibration. Fig. 9(b) shows the normalized469

AATC, as denoted by the yellow-dashed curve.470

D. AATC Calibration: Tackling the Effect of Different471

Acoustic Devices472

1) Modeling the Transmission of the Acoustic Signal From473

the Speaker, Liquid, and Its Container to the Microphone:474

The transmission of the acoustic signal in the whole system475

can be modeled as follows.476

(c)
(d)

(b)

(a)

Fig. 10. Modeling of acoustic signal transmitting from speaker to microphone
and the setting for AATC calibration. (a) Input, impulse response, and output
of the LTI system. (b) Signal from the speaker, container, liquid, to mic.
(c) Signal from speaker, the air, to mic. (d) Reference setting.

1) Frequency Responses of Speaker and Microphone: The 477

speaker and microphone are typical linear time-invariant 478

(LTI) systems [24], which produce an output signal y(t) 479

from any input signal x(t) subject to the constraints of 480

linearity and time invariance. The characteristic of an 481

LTI system is described by its impulse response h(t). 482

Fig. 10(a) shows the relationship among x(t), h(t), and 483

y(t) of the LTI system. The impulse responses of the 484

speaker and microphone are denoted as hs(t) and hm(t), 485

respectively, and the corresponding frequency responses 486

are Hs(f ) and Hm(f ). 487

2) Acoustic Signal Transmission in the Liquid and Its 488

Container: When the acoustic signal travels through a 489

medium, due to the reflection of the obstacles in the 490

medium, there are multiple paths of the signal with dif- 491

ferent delays arriving at the receiver. The received signal 492

can be modeled as an LTI system as well [25], which 493

can be expressed as y(t) = ∑N
i=1 aix(t−τi) = h(t)∗x(t), 494

where h(t) is the signal’s channel impulse response in 495

the medium, N is the number of paths, and ai and τi are 496

the amplitude and time delay of each signal path, respec- 497

tively. When the acoustic signal travels through the 498

container, its channel impulse response hc(t) is mainly 499

affected by the container’s material and thickness. For 500

the acoustic signal traveling through the liquid, i.e., 501

yl(t) = ∑Nl
i=1 alix(t − τli) = hl(t) ∗ x(t), ali and τli in its 502

channel frequency response hl(t) contain the information 503

about the liquid’s absorption of the acoustic signal. 504

Finally, as modeled in Fig. 10(b), the overall received 505

acoustic signal r(t) after the emitted signal s(t) traveling 506

through the cascade of the above four LTI systems can 507

be expressed as r(t) = s(t) ∗ hs(t) ∗ hc(t) ∗ hl(t) ∗ hm(t). 508

By transforming r(t) into the frequency domain, it becomes 509

R(f ) = S(f ) · Hs(f ) · Hc(f ) · Hl(f ) · Hm(f ), where Hc(f ) and 510

Hl(f ) are the channel frequency responses in the container and 511

liquid, respectively. When using different acoustic devices to 512

measure the AATC for the same liquid and container, S(f ), 513

Hc(f ), and Hl(f ) keep unchanged, while Hs(f ) and Hm(t) are 514

different, resulting in different R(f ) with inconsistent AATCs. 515

2) Calibrating the AATC Using the Reference Signal: To 516

remove the effect of the acoustic devices’ frequency responses, 517

we design a reference signal, which directly travels from the 518

speaker and microphone without other medium between them. 519

Specifically, at the initialization stage of the system, we place 520

the speaker and microphone close to each other without space 521
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Fig. 11. Positions of speaker and microphone.

between them, as shown in Fig. 10(d). Under this setting, the522

acoustic signal would directly travel from the speaker and523

microphone without other medium between them. Although524

there is still some air inside devices, the portion is quite small,525

so it can be neglected. Then, the measured reference signal526

rref(t) = s(t) ∗ hs(t) ∗ hm(t). The corresponding frequency-527

domain representation becomes Rref(f ) = S(f ) · Hs(f ) · Hm(f ).528

Since we use the same acoustic devices to measure the refer-529

ence signal and liquid’s AATCs, dividing the reference signal530

by the signal traveling through the liquid in the frequency531

domain becomes the following equation:532

Rref(f )

Rl(f )
= S(f ) · Hs(f ) · Hm(f )

S(f ) · Hs(f ) · Hc(f ) · Hl(f ) · Hm(f )
533

= 1

Hc(f )
· Hl(f ). (1)534

It shows that the calibrated signal is irrelevant to Hs(f ) and535

Hm(f ). In addition, Hc(f ) is a constant factor for the same type536

of liquids to be detected. Thus, the calibrated AATC is only537

affected by the liquid’s frequency response Hl(f ), which can538

reflect the acoustic absorption of the liquid. Note that such a539

setting for calibration is a one-time setup before liquid detec-540

tion, and the frequency response does not need to be calibrated541

again with the same speaker–microphone pair. Based on the542

above AATC calibration method, we calibrate the raw AATCs543

measured with different acoustic devices in Fig. 5(a). The cal-544

ibrated AATCs are shown in Fig. 5(b). The calibrated AATCs545

when using different speakers or microphones exhibit similar546

patterns for the same liquid, which shows the effectiveness of547

our calibration method.548

E. Data Augmentation: Tackling the Effect of Different549

Relative Device-Container Positions550

Ideally, the collected AATCs should involve all the varia-551

tions caused by different relative device-container positions to552

train the liquid detection model. However, manually collect-553

ing the AATCs from as many as possible positions is quite554

labor intensive. In our work, we adopt a data augmentation555

technique, which can automatically emulate the variations in556

AATCs caused by different relative device-container positions.557

To find a proper method for AATC augmentation, we inves-558

tigate the characteristics of the AATCs extracted from different559

relative device-container positions. We first choose one ini-560

tial position at the center of the liquid container to place561

the speaker and microphone. Then, we move the speaker–562

microphone pair up, down, left, and right with 1-cm stepwise,563

as shown in Fig. 11. In sum, ten different pairs of positions are564

selected for the speaker and microphone. In Fig. 12, we depict565

Fig. 12. Distribution of the same liquid’s AATCs for devices at ten positions.

Fig. 13. Architecture of the VAE model which augments AATCs for different
relative device-container positions.

the distribution of the AATCs extracted with the acoustic 566

devices placed at ten different positions relative to the con- 567

tainer for the same liquid. For each position, five AATCs 568

are extracted. Fig. 12 shows that the extracted AATCs share 569

similar distributions at different positions. We also measure 570

the AATC’s distribution for another ten liquids and observe 571

similar patterns. We further apply the equivalence test on the 572

AATCs of different positions to check whether they follow the 573

same distribution. The equivalence interval is set to the average 574

difference among the AATCs collected from the same posi- 575

tion, i.e., 0.03 in our experiment. The average p-value is 0.019 576

(threshold as 0.05), which rejects the hypothesis that the dif- 577

ference among the AATCs of different positions is larger than 578

the equivalence interval. This indicates that the same liquid 579

shares the same AATC distribution even at different relative 580

device-container positions. As such, we can employ the gener- 581

ative model, which can generate new data following the same 582

distribution of the input data with some variations, to augment 583

the AATCs. In our work, we employ VAE for AATC augmen- 584

tation because it can effectively augment more data based on 585

a small amount of input data [9], [26]. 586

Fig. 13 shows the VAE model for AATC augmentation. The 587

input x(n) is the vector of AATC, which is extracted from 588

the manually collected acoustic signal. The output x̃(n) is the 589

reconstructed AATC. The VAE model consists of an encoder 590

whose target is to compress the input feature vector into a 591

latent variable vector z(m) and a decoder that decompresses 592

z(m) to reconstruct the input. m is the length of the latent 593

variable vector. Since the latent variable vector learns a repre- 594

sentation with fewer dimensions than the input, m should be 595

smaller than n. For our case with n = 21, m < 21. Meanwhile, 596

considering that too few dimensions of z could lead to larger 597

information loss, we empirically select m = 16, which, in our 598

work, achieves the highest accuracy when using the generated 599

AATCs to train the model for liquid fraud detection. 600
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Fig. 14. Variances of the AATCs at different frequencies for different relative
device-container positions.

To further enhance the performance of VAE for AATC aug-601

mentation, we add a regularizer in VAE’s loss function based602

on a key observation about the AATCs of different relative603

device-container positions. We find that the AATCs on some604

frequencies experience larger variance than other frequencies605

at different positions. This is mainly due to the frequency-606

selective fading effect of the acoustic signal [27]. In specific,607

the change of multipath acoustic signals caused by the posi-608

tion difference could strengthen or weaken the amplitude of609

the received acoustic signal with a larger degree on some610

frequencies. To show the frequency-selective fading effect on611

the AATCs of different positions, we depict the variances of612

AATCs over all the frequencies for the authentic liquor, olive613

oil, wine, and honey in Fig. 14. It shows that AATCs exhibit614

larger variances at several frequencies, i.e., the frequencies615

whose variances are above the mean of all the variances. This616

indicates that some frequencies are more sensitive to different617

positions. Recall that our purpose of using VAE is to generate618

AATCs that seem like being obtained under different device-619

container positions. To this end, we add a frequency-sensitive620

regularizer in the VAE’s loss function L to enlarge the AATCs’621

variances for those sensitive frequencies as follows:622

L = Eqθ(z|xi)

[
log pφ(x|z)]

︸ ︷︷ ︸
reconstruction loss

− KL(qθ (z|x)‖p(z))
︸ ︷︷ ︸

KL divergence

623

−
∥
∥
∥AATC(fsen) − ˜AATC(fsen)

∥
∥
∥

1︸ ︷︷ ︸
frequency−sensitive regularizer

. (2)624

In (2), the first and second terms, which are the reconstruc-625

tion loss between the input and generated AATCs and the626

Kullback–Leibler (KL) divergence, form the original VAE loss627

function. The third term is our added frequency-sensitive reg-628

ularizer, where AATC(fsel) and ˜AATC(fsel) are the input and629

generated AATCs’ values on the sensitive frequencies fsen,630

respectively. To select fsen, we first calculate the variances631

of the manually measured AATCs for each frequency and632

obtain the mean of all the variances. Then, the frequencies633

whose variances exceed the mean are selected as fsen. When634

training the VAE model, L is minimized to find the optimal635

weights in (2); meanwhile, the difference between the input636

and generated AATCs’ values on those sensitive frequencies637

is enlarged. Finally, based on a certain number of manually638

measured AATCs, the VAE model will generate more AATCs639

for the authentic liquid, which are combined with the manually 640

measured AATCs to train the liquid detection model. 641

F. Liquid Detection 642

1) Liquid Fraud Detection: To detect liquid fraud, intu- 643

itively, we can collect data from both authentic and fake liquids 644

to train a binary classification model. However, in practice, it 645

is difficult or impractical to acquire all kinds of fake liquids 646

with various fraudulent components and adulteration ratios. 647

Thus, we regard fake liquids as anomalies toward the authen- 648

tic liquid and propose to build an anomaly detection model 649

only using the AATCs of the authentic liquid. 650

We employ the VAE to build the anomaly detection 651

model [28], [29]. The principle of using VAE for anomaly 652

detection lies in the differences between the reconstruction 653

losses of authentic and fake liquids. When training the VAE 654

model using the authentic liquid’s AATCs, the reconstruction 655

loss between the input and generated AATCs is minimized. 656

Then, VAE can learn how to generate new AATCs following 657

the same distribution of the authentic liquid. When the testing 658

input is the AATC of an authentic liquid, the reconstruction 659

loss can be quite small. While if the testing input comes from 660

a fake liquid since the AATCs of the authentic and fake liq- 661

uids have different distributions, the reconstruction loss would 662

be larger than that of the authentic liquid. Therefore, we can 663

use the reconstruction loss of VAE to train the anomaly detec- 664

tion model. Specifically, we obtain all the reconstruction loss 665

values when using the authentic liquid’s AATCs to train the 666

VAE model in Fig. 13. Then, we follow the three-sigma rule of 667

thumb to select the threshold δt to detect the anomalies [30]. 668

The mean (μt) and standard deviation (σt) of all the losses 669

are calculated. We compare the liquid fraud detection accu- 670

racy using μt + σt, μt + 2σt, and μt + 3σt as δt, respectively. 671

We set δt to μt + σt since it achieves the best accuracy. For 672

an unknown liquid, we input its AATC to the VAE model. If 673

the reconstruction loss is larger than δt, it is detected as the 674

fake liquid, and vice versa. 675

2) Liquid Adulteration Ratio Recognition: Apart from liq- 676

uid fraud detection, we find that the AATC has the potential to 677

differentiate the adulterated liquids with different adulteration 678

ratios according to the observations from Fig. 4(c) and (f). For 679

instance, the AATCs of mixing the liquor with isopropanol by 680

the ratios of 7:3 and 6:4 show different patterns. This brings 681

the opportunity for recognizing the liquid adulteration ratio. In 682

practice, the liquids could be harmful to human health if the 683

adulteration ratio exceeds a certain level. Therefore, it would 684

be useful to recognize the liquid adulteration ratio using the 685

AATC. 686

To achieve this, we first predefine the interested adulter- 687

ation ratios, e.g., 20%, 30%, and 40%, and collect the acoustic 688

signal traveling through the adulterated liquids with differ- 689

ent adulteration ratios. Next, AATC extraction, calibration, 690

and augmentation are performed. Before inputting AATCs 691

for training, we apply the largest margin nearest neighbor 692

(LMNN) to map the AATC into a new space, so that the 693

AATCs of the liquids with different adulteration ratios become 694

more discriminative from each other. This is because LMNN 695
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(a)

(b)

Fig. 15. AATCs before and after performing LMNN. (a) Before LMNN.
(b) After LMNN.

Fig. 16. MLP-based classification model for adulteration ratio recognition.

TABLE I
SPECIFICATION OF THE ACOUSTIC DEVICES

can “pull” the AATCs of the same class closer and meanwhile,696

“push” the AATCs of different classes farther from each other.697

By doing this, LMNN can find a space in which AATCs of698

different adulteration ratios become larger while AATCs of699

the same ratio are narrowed. Fig. 15 depicts the AATC before700

and after applying the LMNN for two ethanol-mixed liquor701

with close adulteration ratios. Compared with AATCs with-702

out LMNN, the transformed AATCs of the same liquid after703

LMNN are closer to each other, and AATCs of different liq-704

uids are of larger difference with each other. Finally, we apply705

the multilayer perceptron (MLP) neural network to build the706

classification model, as shown in Fig. 16. For the fake liq-707

uid with an unknown adulteration ratio, its AATC is extracted708

and input to the classification model to obtain the adulteration709

ratio.710

IV. IMPLEMENTATION AND EVALUATION711

A. Hardware712

HearLiquid is implemented with commodity acoustic713

devices. The specifications of employed acoustic devices are714

listed in Table I. We use both commercial off-the-shelf exter-715

nal speaker–microphone pair and the bottom microphone in716

Fig. 17. System setup using external acoustic devices and smartphone.

the smartphone as acoustic devices. As shown in Fig. 17, the 717

acoustic devices are stuck to the two sides of the container 718

surface using the adhesive type. The speaker and microphone 719

are placed horizontally in the middle of the two sides of the 720

container. The acoustic devices can also be flexibly placed at 721

different positions relative to the container, e.g., the red- and 722

blue-dashed lines in the third subfigure in Fig. 17, for more 723

convenient use of our system. External speaker–microphone 724

pair is connected to the raspberry pi/laptop via a common 725

sound card to send and receive the acoustic signal, respec- 726

tively. The prices of external speakers and microphones are 727

U.S. $5–$15. Apart from external acoustic devices, smart- 728

phones can also be used. For example, we can use the bottom 729

speaker of the smartphone to send out the acoustic signal, as 730

shown in Fig. 17. 731

B. Software 732

We use Python to generate and process the acoustic signal. 733

The generated acoustic signal is made of 21 sine waves whose 734

frequencies range from 18 to 20 kHz with the same interval of 735

100 Hz. The signal is saved as a WAV file. The sampling rate 736

of acoustic signal is 48 kHz, and the time duration for FFT is 737

4 s. Then, the frequency resolution after FFT is 0.25 Hz, which 738

is fine-grained enough to extract the amplitude on each desired 739

integer frequency. The VAE and MLP models are trained via 740

PyTorch on a server equipped with Intel Xeon CPU E5-2680 741

v2 and Nvidia GeForce RTX 2080 GPU with 32-GB memory. 742

When training the model, we use the Adam optimizer and set 743

the learning rate = 1e-4 and betas = (0.9, 0.999). The trained 744

models are stored in the server for detecting the unknown 745

liquid. To evaluate the performance of liquid fraud detection 746

and liquid adulteration ratio recognition, the following metrics 747

are used: 748

Accuracy = TP + TN

TP + TN + FP + FN
749

Precision = TP

TP + FP
, Recall = TP

TP + FN
750

F1 score = 2 · Precision · Recall

Precision + Recall
. (3) 751

C. Liquid Data Collection 752

We collect data from liquids of common liquid fraud cases 753

in people’s daily life, including liquor, extra-virgin olive oil, 754

wine, and honey frauds, as listed in Table II. 755

Authentic and Tainted Liquor: High-quality liquor is pop- 756

ular in many countries as daily drinks and gifts. Due to its 757

high price, mixing authentic liquor with cheap and inedible 758
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TABLE II
LIST OF AUTHENTIC AND FAKE LIQUIDS FOR DIFFERENT CASES

alcohol for sale is the main method of liquor counterfeiting.759

Therefore, we prepare a high-quality authentic liquor product,760

the Grey Goose Vodka, and other kinds of alcohol, including761

ethanol (e.), methanol (m.), and isopropanol (i.), to mix with762

the authentic liquor as fake liquids. To show the system’s abil-763

ity to detect fake liquids with random mixtures of fraudulent764

liquids, we mix the authentic liquor with ethanol, methanol,765

and isopropanol, respectively. For each fraudulent alcohol, we766

make three bottles of fake liquids, which are obtained by ran-767

domly mixing the liquor with the corresponding alcohol. To768

evaluate the system for detecting the fake liquid, which has769

the same alcohol level as the authentic liquor but with lower770

quality, we choose a cheaper vodka, Stolichnaya Vodka, as771

the fake liquor. We also mix the authentic liquor with dif-772

ferent percentages of the isopropanol, including 30%, 35%,773

40%, and 45%, to evaluate the performance of adulteration774

ratio recognition.775

Authentic and Adulterated Extra-Virgin Olive Oil: Extra-776

virgin olive oil provides many nutrients and antioxidants that777

are beneficial to people’s health. While the price of extra-778

virgin olive oil is usually eight to ten times higher than the779

prices of canola oil or soybean oil. Some oil sellers would mix780

the real extra-virgin olive oil with cheaper oil to make more781

profits. Thus, we prepare an authentic olive oil, the Colavita782

extra-virgin olive oil, and other kinds of cheap oil, including783

canola (c.) oil, soybean (s.) oil, and peanut (p.) oil. We first784

randomly mix the authentic oil with the canola oil, soybean oil,785

and peanut oil, respectively. Meanwhile, we mix the authentic786

olive oil with different percentages of the canola oil, including787

50%, 60%, 70%, and 80%.788

Wine Fraud: Relabeling cheap wines to expensive ones is a789

common wine fraud. The expensive wines can be simply coun-790

terfeited by changing the wine label. In this case, we prepare791

an expensive wine, Torres Mas La Plana (grape: Cabernet792

Sauvignon), as the authentic wine, and three cheap wines,793

Barefoot California (grape: Merlot), Penfolds Koonunga Hill794

(grape: Shiraz), and Mirassou California (grape: Pinot Noir),795

with different grape types and brands as the fake liquids. In 796

addition, to test whether the wine with different grape types 797

can be detected, we prepare four wines of the same brand 798

Barefoot California but different grape types, including Pinot 799

Noir, Shiraz, Merlot, and Zinfandel. Pinot Noir is regarded 800

as the authentic wine and the other three types of grapes are 801

treated as fake wines against Pinot Noir. 802

Honey Fraud: Honey is the third most faked food in the 803

world. The quality of honey varies a lot. The honey with a 804

higher level of methylglyoxal (MGO) is much more expen- 805

sive than ordinary honey. It is common that high-quality honey 806

is replaced with poor one for sales. Thus, we prepare one 807

high-quality honey, Comvita Manuka Honey with MGO, as 808

the authentic honey, and select three cheaper honey, i.e., wild- 809

flower honey, lemon honey, and longan flower honey, as fake 810

honey. In addition, to show the system’s ability to recognize 811

the Manuka honey with different MGO levels, we prepare 812

three MGO levels Manuka honey (83+, 263+, and 514+). 813

During data collection, we measure the acoustic signal at 814

different device-container positions to train and test the model, 815

where ten traces of the acoustic signal are collected at each 816

position. For each case of liquid fraud detection, we use 70 817

manually collected AATCs from the authentic liquid to train 818

the data augmentation model and generate 400 more AATCs, 819

which are combined with the 70 manually collected AATCs 820

to train the fraud detection model. Then, we collect another 821

100 AATCs from each of the authentic and fake liquids at 822

random positions to test the model. For adulteration ratio clas- 823

sification, 50 AATCs are manually collected from each ratio 824

of liquids, which are separately augmented with 400 more 825

AATCs. The classification model is trained with the manu- 826

ally collected and VAE generated AATCs of all the liquids. 827

Finally, we collect another 100 AATCs for each ratio of liquids 828

at random positions to test the classification model. 829

D. Evaluation Results 830

1) Overall Performance: First, we show the overall 831

performance of the system on liquid fraud detection and adul- 832

teration ratio recognition. In Fig. 18, the accuracy, precision, 833

recall, and F1 score are shown for all the liquid fraud cases. 834

The accuracy of liquid fraud detection is around 92%–96%. 835

Specifically, for the liquor (liquor+x(r), x: ethanol, methanol, 836

or isopropanol) and olive oil (olive+x(r), x: canola, soybean, 837

or peanut oil) fraud detection, the average accuracy is approx- 838

imately 95%, showing that the system can accurately detect 839

the fake liquids with random mixtures of fraudulent liquids. 840

Meanwhile, the system can detect the fake cheap liquor whose 841

alcohol level is the same as the expensive authentic liquor with 842

an accuracy of 92%. For wine fraud detection, the accuracy 843

when detecting the fake wines whose brands and grape types 844

are all different from the authentic wine is about 96%. While 845

the accuracy drops a little to around 93% for detecting the 846

fake wines whose brands are the same but with different grape 847

types. The accuracy of detecting honey fraud is about 95%. We 848

also prepare two bottles of honey with a similar MGO level 849

(263+) but different brands to investigate whether our method 850
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Fig. 18. Overall performance for liquid fraud detection and adulteration ratio recognition for different liquid fraud cases.

can differentiate similar kind of liquids but produced by dif-851

ferent companies. We measure the AATCs from one bottle of852

honey (regard as the authentic honey) and train the liquid fraud853

detection model and use the AATCs collected from the other854

bottle of honey (regard as the fake honey) to test the model.855

The results show that 89.3% of the testing samples are accu-856

rately detected as the fake honey. This is because, although857

having the same MGO level, they are still different in other858

ingredients, e.g., the amount of carbohydrate and sugar is dif-859

ferent. This indicates that the components of the two types of860

honey still have some differences so that their absorption of861

the acoustic signal would be distinctive.3862

For liquid adulteration ratio recognition, we train the ratio863

classification models for the isopropanol-mixed liquor and864

canola-mixed olive oil with four different adulteration ratios,865

respectively. As shown in the right part of Fig. 18, the accu-866

racy for recognizing the adulteration ratio of liquor with the867

ratio difference of 5% is around 94%, and the recognition868

accuracy of the olive oil adulteration ratio with 10% interval869

can reach about 97%. Besides, the Manuka honey with dif-870

ferent levels of MGO can be recognized with an accuracy871

of 95%.872

2) Impact of AATC Granularity: In Section III-B, we men-873

tioned that the frequency interval If determines the granularity874

of AATC. A smaller If can result in a more fine-grained AATC,875

which has more frequencies in the AATC. The AATC granular-876

ity may affect the liquid fraud detection accuracy. Therefore,877

we change If ranging from 50 to 300 Hz, which results in878

7 (If = 300 Hz), 11 (If = 200 Hz), 21 (If = 100 Hz),879

and 41 (If = 50 Hz) frequencies in the range of [18 kHz,880

20 kHz]. The average accuracy of using different numbers of881

frequencies for all the liquid fraud cases is shown in Fig. 19.882

The results show that when the number of frequencies is883

less than 21, the detection accuracy increases with the grow-884

ing number of frequencies. This is because more number of885

frequencies involves more information of the acoustic absorp-886

tion and transmission in the liquid. However, the accuracy887

slightly drops for 41 frequencies. Meanwhile, we compare888

the F1 score using different If , and If = 100 Hz with 21889

frequencies also achieves the highest F1 score of 94.6%. This890

may due to the reason that more frequencies introduce more891

redundant and noisy information in the AATC, which could892

3We find our method does not work when the honey experiences crystal-
lization because the honey components change in this process.

Fig. 19. Accuracy of liquid fraud detection with different numbers of
frequencies in AATC.

lead to misdetection of the liquid. Therefore, in our system, 893

we use 21 frequencies with an interval of 100 Hz to generate 894

the acoustic signal. 895

3) Performance With Different Acoustic Devices: In this 896

evaluation, we show the performance of the system for liq- 897

uid fraud detection using different acoustic devices. First, we 898

use two different sets of acoustic devices, including exter- 899

nal speaker and microphone, and external speaker and bottom 900

microphone of the smartphone, to train and test the liquid 901

fraud detection model, respectively. When using both exter- 902

nal speaker and microphone, the accuracy and F1 score are 903

0.956 and 0.954, respectively. When using the external speaker 904

and the smartphone’s bottom microphone, the accuracy and 905

F1 score are 0.935 and 0.934, respectively. Second, we use 906

different external speakers and microphones to evaluate our 907

calibration method. We use three speakers (S1, S2, and S3) 908

and two microphones (M1 and M2) to evaluate our proposed 909

AATC calibration method for removing the effect of hardware 910

diversity. S1 and S2 are from the same brand (B1) but with 911

different specifications, while S3 is from another brand (B2). 912

M1 and M2 are from different brands B3 and B4, respec- 913

tively. In the experiment, we first use speaker B1-S1 and 914

microphone B3-M1 to collect both the training and the first 915

testing data. Then, to evaluate the detection accuracy of using 916

different devices from the same brand, we keep the micro- 917

phone B3-M1 while using another speaker B1-S2 to collect 918

the second testing data. Furthermore, we use speaker B2-S2 919

and microphone B4-M2 to collect the third testing data to eval- 920

uate the performance of liquid fraud detection using different 921

brands’ devices. The results are shown in Fig. 20. Comparing 922

with the accuracy of using the training and testing data from 923

the same acoustic devices, the accuracy of using different 924
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Fig. 20. Accuracy of liquid fraud detection (different acoustic devices).

Fig. 21. Liquid fraud detection using different containers.

acoustic devices with the same brand still exceeds 92% with925

only 3%–4% decrease of accuracy, which shows the effective-926

ness of our AATC calibration method. The accuracy further927

decreases slightly to about 89%–91% when using devices from928

different brands because the frequency responses of different929

brand’s devices have larger deviations of the measured AATCs.930

4) Impact of Liquid Container Material: To show the effec-931

tiveness of our system on liquid fraud detection using different932

container materials, we use glass, plastic, paper, and aluminum933

containers to fill in the authentic and fake liquor, respectively.934

For each kind of container, we train a separate anomaly detec-935

tion model using the AATCs of the authentic liquor and then936

test the model using the AATCs of the authentic and fake937

liquor. The average accuracy, precision, and recall for differ-938

ent containers are shown in Fig. 21, which all exceed 90%.939

This article container has slightly higher accuracy compared940

with that of the glass container because this article container941

is thinner than the glass container, which incurs less impact942

on AATC extraction. Besides, our system achieves around943

95% accuracy using the aluminum container, which cannot944

be used by RF-based methods. This is because the RF signal945

transmission could be significantly affected by the metal. In946

practice, metal can reflect most of the RF signal, and the RF947

signal attenuates very fast in the liquid, which results in an948

extremely weak received signal. In addition, metal materials949

could change the hardware property of the RF devices (e.g.,950

RFID tag’s impedance), making the RF signal undetectable.951

5) Impact of AATC Augmentation: When using VAE, two952

factors can affect the liquid detection performance. The first953

factor is the number of relative device-container positions to954

collect the AATCs for training the VAE model. The second955

factor is the number of generated AATCs from VAE for train-956

ing the anomaly detection and ratio recognition models. In this957

evaluation, we test the system performance for each factor.958

First, we investigate the effect of different numbers of posi-959

tions to collect the AATCs for training the VAE model. We960

choose ten different positions and use different numbers of961

(a) (b)

Fig. 22. Effect of the number of positions to collect the AATCs for training
the VAE model and the number of augmented AATCs for liquid detection.
(a) Number of positions. (b) Number of generated AATCs.

them (from 1 to 10) to collect AATCs and train the VAE 962

model. Then, we ask volunteers to randomly collect AATCs 963

from another ten positions to test the model. We guarantee 964

that the positions for training and testing do not overlap. At 965

each position, ten AATCs are collected. The AATCs generated 966

from the VAE model are mixed with the manually collected 967

AATCs to train the liquid detection models. We fix the num- 968

ber of generated AATCs from VAE to 400. The accuracy 969

of using the AATCs from different numbers of positions is 970

shown in Fig. 22(a). With more positions’ AATCs to train the 971

VAE model, the testing accuracy gradually increases. This is 972

because the VAE model can learn more patterns from more 973

device-container positions. In our experiment, for liquid fraud 974

detection, the accuracy does not improve obviously after the 975

number of trained positions exceeds 7. Therefore, we only 976

need to collect the training AATCs from seven positions (i.e., 977

70 AATCs), and the AATCs collected from other positions can 978

be accurately detected. For ratio recognition, the AATCs from 979

five different positions (i.e., 50 AATCs) are collected from 980

each ratio of liquid to train the classification model, which 981

already achieves an average classification accuracy of around 982

96%. 983

Second, we investigate the effect of different numbers of 984

generated AATCs from VAE. We fixed the number of man- 985

ually collected AATCs to 70 (for anomaly detection) and 50 986

(for ratio recognition) while using 100, 200, 300, 400, and 987

500 generated AATCs, which are combined with manually 988

collected AATCs, to train liquid detection models. As shown 989

in Fig. 22(b), the accuracy increases with more number of gen- 990

erated AATCs. When the number of generated AATCs reaches 991

300, the average accuracy for all cases exceeds 90%. As the 992

number increases to 400, the average accuracy exceeds 94%. 993

When the number is above 400, our system shows no pro- 994

nounced improvement. Thus, we generate 400 AATCs from 995

the VAE to augment the training data. 996

Third, we compare the liquid detection performance with- 997

out VAE, with VAE using original loss function, with VAE 998

using our new loss function. First, we train the anomaly detec- 999

tion model and adulteration ratio classification model only 1000

using manually measured AATCs without VAE for data aug- 1001

mentation. Then, we train two liquid detection models with 1002

manually measured and augmented AATCs using the origi- 1003

nal VAE loss function. Finally, we use VAE and the new loss 1004

function to generate AATCs and train the models. All models 1005
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(a) (b) (c)

Fig. 23. Different tables and surrounding layouts. (a) Layout 1. (b) Layout
2. (c) Layout 3.

Fig. 24. Detection results under different tables and layouts.

are tested using the AATCs randomly collected from different1006

device-container positions. The detection results show that the1007

accuracy without augmentation is around 10% lower than that1008

using the VAE and original loss function. By applying our new1009

loss function, the accuracy can be further improved by another1010

3%–5%. Therefore, our dedicatedly designed VAE model can1011

indeed augment effective AATCs for different positions to train1012

the liquid detection models.1013

6) Impact of different Environments: In practice, the1014

acoustic signal could be reflected by surrounding objects,1015

which would be received by the microphone. As a result, dif-1016

ferent tables and surrounding objects could bring multipath1017

signals in the received acoustic signal. In this evaluation, we1018

change the table and surrounding objects around the container1019

to investigate whether the detection performance would be1020

affected by different tables and layouts. We first place liq-1021

uids on Table I (made of wood) with layout 1 as shown in1022

Fig. 23(a) to measure the AATC and train and test the liquid1023

detection model. Then, we apply the trained model to detect1024

the same liquids but under different tables (Table II: made of1025

metal) and layouts (layout 2 and layout 3: different surround-1026

ing objects), as shown in Fig. 23(b) and (c). The detection1027

results are given in Fig. 24. The accuracy all exceeds 90%1028

and only decreases 2%–4% under different tables and layouts.1029

This is because we intentionally place the microphone in the1030

acoustic shadow zone, within which the table reflected sig-1031

nals and other diffracted signals are significantly reduced [21].1032

Meanwhile, we design a data augmentation method using VAE1033

to help improve the robustness of our system in the face of1034

multipath signals.1035

The temperature and humidity can influence the acoustic1036

impedance, which may affect the system performance. Thus,1037

we change the temperature and humidity to see their effects1038

on liquid fraud detection and ratio recognition. To investigate1039

the temperature effects, we first collect AATCs with a 23 ◦C1040

temperature for both the environment and liquid to train and1041

test liquid detection models. Then, we keep the temperature1042

Fig. 25. Accuracy of liquid fraud detection and adulteration ratio recognition
with different temperature and humidity ratios. (a) Accuracy for different
temperature. (b) Accuracy for different humidity.

of the liquid while increasing the environment temperature to 1043

28 ◦C to test the models. Next, we keep the environmental 1044

temperature while using the same liquid with a 4 ◦C tempera- 1045

ture to test the models. For the humidity effect, we first collect 1046

the training and testing AATCs in a 58% humidity ratio envi- 1047

ronment. Then, we increase the humidity ratio to around 80% 1048

and collect a set of testing AATCs. The accuracy of liquid 1049

fraud detection and ratio recognition under different tempera- 1050

tures and humidity ratios is shown in Fig. 25. The results show 1051

that the accuracy under the 28 ◦C environment temperature, 1052

4◦C liquid temperature, and the 80% humidity ratio is com- 1053

parable with those under the 23 ◦C environment and liquid 1054

temperature as well as 58% humidity ratio, respectively. This 1055

is because temperature and humidity impact the velocity v of 1056

the acoustic signal in a linear way [22], [31], and v is gener- 1057

ally inversely proportional to the acoustic absorption ratio of 1058

liquid α in the frequency band ranging from 18 to 20 kHz, 1059

i.e., α ∼ 1/v [32]. Thus, AATC changes linearly with different 1060

temperatures and humidity ratios within the same frequency 1061

band, which can be removed by the AATC normalization 1062

step. 1063

V. RELATED WORK 1064

In this section, we introduce the related works for liquid 1065

detection using different sensors and signals. 1066

A. Chemical and Biological Sensor-Based Systems 1067

Chemical and biological sensors have been used to identify 1068

the target analytes in the liquid by food labs and indus- 1069

tries. They aim to extract properties of the biomolecules via 1070

various methods, e.g., electrochemical [5] and mass-based 1071

detection [33]. In food and liquid testing labs, many tools, 1072

e.g., the infrared spectrometer, are used to detect and analyze 1073

various kinds of analytes and contaminants in the liquid. The 1074

chemical and biological sensor-based systems are generally 1075

expensive and require complicated operations for measuring 1076

liquid properties, which are unavailable for public use. In addi- 1077

tion, the chemical and biological sensors require direct contact 1078

with the liquid, which is quite intrusive and inconvenient for 1079

sealed liquids. In our work, we propose a liquid fraud detection 1080

system using cost-effective acoustic devices, which can detect 1081

the fake liquids in a nonintrusive manner without opening the 1082

liquid container. 1083
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B. RF Signal-Based Systems1084

Recently, researchers use RF signals to detect1085

liquids [9]–[13]. They employ the properties of the dielectric1086

spectroscopy or the impedance of the liquid to differentiate1087

different liquids. RF-EAT [9] and RFIQ [10] enable liquid1088

and food sensing by measuring the near-field coupling effect1089

between RFID tags and the liquid. LiquID [11] uses an1090

UWB radar signal to estimate the liquid permittivity by1091

measuring the ToF of the radar signal traveling through the1092

liquid. However, these systems require specialized devices1093

(e.g., USRP and UWB radar), which is difficult for public1094

use. Tagtag [12] and TagScan [13] leverage commercial1095

off-the-shelf RFID devices to measure the changes of the1096

RFID signal’s phase and RSSI based on the impedance1097

change of the tag caused by different liquids. However, RF1098

signals cannot detect the liquids with metal containers. For1099

the RFID-based method, metal containers could significantly1100

affect the RFID tag’s impedance [34], which makes the RFID1101

tag undetectable. Hence, it cannot sense the liquid inside1102

the container. UWB radar leverages the RF signal traveling1103

through the liquid for liquid detection. However, metal1104

containers reflect most of the RF signal, and the RF signal1105

attenuates significantly in the liquid, resulting in an extremely1106

weak received signal. In contrast, our acoustic-based method1107

can work properly for metal containers, so that our system1108

can be applied to cope with more kinds of containers.1109

C. Acoustic-Based Systems1110

Ultrasound sensors are employed for detecting the contam-1111

inants in the liquid by measuring the tiny penetration depth1112

of the shear waves [35]. Ultrasound sensors can measure the1113

sound speed in liquid for liquid detection since the acoustic1114

signal travels at different speeds in different liquids. However,1115

the ultrasound-based system requires wide frequency band-1116

width (e.g., >500 kHz) to accurately measure the ToF, which is1117

not supported by most commodity acoustic devices. Compared1118

with ultrasound-based systems, our system only uses commod-1119

ity acoustic devices to measure the AATC, which is more cost1120

effective. The acoustic reflection is also employed for liquid-1121

related applications. SoQr [36] employs the liquids reflection1122

of the acoustic signal and extracts the Mel-frequency cep-1123

stral coefficients to train a liquid level classification model.1124

However, such a system needs to open the liquid container to1125

expose the liquid surface for measuring the acoustic reflection.1126

Different from SoQr, our system investigates the liquids intrin-1127

sic characteristic, i.e., acoustic impedance, which is revealed1128

in the absorption of acoustic signal. Such an important fea-1129

ture enables differentiating fake liquids from the authentic1130

one. Meanwhile, our method does not require opening the liq-1131

uid container, which provides a nonintrusive way for liquid1132

detection.1133

D. Other Systems1134

QET-based systems detect flammable and explosive liquids,1135

which have been widely deployed at many public places,1136

such as the airport and train station [6]. QET technique mea-1137

sures electrical properties of the liquid, i.e., permittivity and1138

conductivity, to test whether the liquid is flammable. While 1139

current QET-based systems cannot realize liquid fraud detec- 1140

tion. Another kind of system uses the tensiometer [7] or the 1141

camera [8] to measure the surface tension of the liquid to 1142

identify the liquid type. However, they need to open the liq- 1143

uid container for measuring the tension, and the tensiometer 1144

could cost thousands of U.S. dollars. 1145

VI. DISCUSSION 1146

We discuss several practical issues about using the 1147

HearLiquid system in this section. First, there could be many 1148

background noises, which may mix with the measured acoustic 1149

signal. However, frequencies of most background noises in 1150

the environments, as well as the human voice, are lower than 1151

8 kHz. In our work, to make the sound inaudible, we select the 1152

frequency band of [18 kHz, 20 kHz] for the acoustic signal. 1153

We note that the gap between the frequency band we apply 1154

and the background noise is as far as 10 kHz. Therefore, in 1155

our work, we remove background noises in the environment 1156

with a high-pass filter. 1157

Second, in HearLiquid, the extracted AATC of the liquid, 1158

in fact, involves the effect of the liquid container. While, the 1159

containers of liquids are usually the same for the same cat- 1160

egory of liquids since counterfeiting and adulterated liquids 1161

usually use the same container as the authentic liquid to cheat 1162

consumers. Thus, the container effect can be ignored in the 1163

current system. However, when the liquid container changes, 1164

the detection model needs to be updated with the AATCs col- 1165

lected with the new container. Although it is not complicated 1166

to upgrade the model, it would be better if we can remove 1167

the effect of container. In future work, we will try to deal 1168

with the containers effect with the transfer learning technique, 1169

which may transfer the liquid’s property measured with one 1170

container to another container with less data collection and 1171

model training effort. 1172

VII. CONCLUSION 1173

In this work, we proposed HearLiquid, which can detect 1174

the liquid fraud in a nonintrusive manner using commodity 1175

acoustic devices. It is the first time that commodity acoustic 1176

devices are used for liquid detection. We extract the AATC 1177

from the acoustic signal traveling through the liquid, i.e., 1178

AATC, which can be used to differentiate different liquids. 1179

To deal with the practical factors for extracting the AATC, we 1180

proposed a series of methods to tackle the hardware diversity 1181

of the acoustic devices and the AATC variations brought by 1182

different relative device-container positions. We applied a ref- 1183

erence signal to calibrate different frequency responses caused 1184

by the hardware diversity. Based on the patterns of the mea- 1185

sured AATCs at different relative device-container positions, 1186

we leveraged a data augmentation technique to automatically 1187

emulate a large number of AATCs under different positions. 1188

The augmented AATCs sufficiently copes with the AATC vari- 1189

ations to promote the liquid detection accuracy. We conduct 1190

extensive experiments on various liquid fraud cases under dif- 1191

ferent experiment settings. The experimental results show that 1192

HearLiquid achieves an overall accuracy up to 97%. 1193
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