

## Yanwen Wang, Jiaxing Shen, Yuanqing Zheng

The Hong Kong Polytechnic University, Hong Kong, China

INFOCOM 2020, Online July 2020

## **Contact-free Gesture Recognition**



#### **Camera-based**

#### **Camera-based**

Rely on Line-of-Sight path
Rely on good lighting conditions

## **Contact-free Gesture Recognition**



#### **Millimeter Wave**

#### **Millimeter Wave**

https://atap.google.com/soli/

Works in 60 GHz frequency band
Not allowed in some countries





#### **FMCW**



[1] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-home gesture recognition using wireless signals. In ACM MobiCom 2013.
[2] Kellogg, Bryce, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing gesture recognition to all devices. In USENIX NSDI 2014.

Require specialized devicesHigh deployment costs

## **Benefit from Gesture Recognition**



#### Avoid contact contamination in public area

## **Acoustic-based Finger Tracking**







R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota. Fingerio: Using active sonar for fine-grained finger tracking. In ACM CHI, 2016.
W. Wang, A. X. Liu, and K. Sun. Device-free gesture tracking using acoustic signals. In ACM MobiCom, 2016.
S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao. Strata: Fine-grained acoustic-based device-free tracking. In ACM MobiSys, 2017.

Model the whole finger/hand as a single reflection point
Insufficient resolution for gesture recognition

## RobuCIR



Acoustic signal based gesture recognition system with high robustness

## **Use Neural Network**



Insufficient data for training
Low robustness

## Overview



## Measure the Channel: Channel Impulse Response



Methodology

02

Least Square (LS) channel estimation  $h = \arg \min_{h} ||r - Mh||^2$ 

M is the training matrix consisting of transmitted circulant orthogonal codes
r is the received signal
Each value in h measures the channel information of a certain propagation delay range.

10

# 02 Methodology Limitation of Single Frequency Frequency Selective Fading







#### constructively add

destructively add

## **Our Solution**

## Frequency Hopping Scheme



Demodulated baseband signal involves information from multiple frequencies

## **Apply Data Augmentation to Raw CIR Measurement**

- 1 Different speeds
- ② Different hand-smartphone distances
- ③ Blockage of LoS
- (4) Noisy environments
- 5 Different angles to smartphone

## 02 Methodology Impact Factor: 1 Different speeds of the gestures



**Data augmentation:** Horizontally expanding or contracting an original CIR measurement

## 02 Methodology Impact Factor: (2) Different distances to the receiver



#### **Data augmentation:** Vertically drifting in tap indexes

## Impact Factor: ③ Blockage of transceiver



**Data augmentation:** Scale and normalize the CIR magnitude measurements

## Impact Factor: (4) Noisy environments



## Impact Factor: (5) Different angles to device



## System Performance

## Robustness

**Under Different Experiment Settings** 

## **Experiment Settings**

| Transmitted Frequency       | 18KHz, 20KHz, 22KHz                                         |  |  |
|-----------------------------|-------------------------------------------------------------|--|--|
| Transmitted Baseband Signal | 26-bit TSC                                                  |  |  |
| Smartphone                  | Samsung S9 Plus, Samsung S7 Edge, Google NEXUS 5            |  |  |
| <b>Eight Volunteers</b>     | 5 males and 3 females                                       |  |  |
| Environment                 | 8 different rooms with different layouts, 5 usage scenarios |  |  |
| Collected Data              | 3600 samples                                                |  |  |
| Benchmark                   | UltraGesture <sup>1</sup>                                   |  |  |
| Data Augmentation Rate      | 100X                                                        |  |  |
| Neural Network              | 3-layer CNN + 8-cell 1 layer LSTM                           |  |  |

## Scenarios Settings

| Different Speeds       | At most 5 $	imes$ (e.g., from 0.4s to 2s                                                 | 5)           |
|------------------------|------------------------------------------------------------------------------------------|--------------|
| Different Distances    | Up to 0.5m from smartphone                                                               | (« )<br>0.5m |
| Blockage of LoS        | In a cotton bag                                                                          |              |
| Different Angles       | Ranging from $0^{\circ} \sim 180^{\circ}$                                                |              |
| Noisy Environments     | Another mobile phone plays music nearby                                                  |              |
| Different Environments | 10 $	imes$ 8 $	imes$ 3m <sup>3</sup> ~ 4 $	imes$ 4 $	imes$ 3m <sup>3</sup> with differen | t layouts    |

## 03 Evaluation Model Training and Gesture Identification

## 10-fold cross-validation ---- train 6 & test 2 Model size: 5.5M



- Intel(R) Xeon(R) E5-2620 v4 CPU @2.10GHz
- 32GB memory
- Two Nvidia GTX 1080 Ti GPU graphics cards.
- Using TensorFlow

| <b>CIR Measurements Calculation</b> |                 |       | Gesture Recognition |
|-------------------------------------|-----------------|-------|---------------------|
| Frame detection                     | Down-conversion | LS    | Coupled NN model    |
| 1.3ms                               | 2.2ms           | 4.8ms | 23ms                |

## System Performance

#### Accuracy

Slide up (2) Push (3) -0.01 0.00 0.00 0.97 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 Pull (4) Punch (5) R-clock (6) 0.00 0.00 0.01 0.00 0.00 0.00 0.96 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 R-anticlock (7) Pinch (12) 

#### True Activities





## Improvement of Robustness



UltraGesture does not consider gestures under different impact factors



## **Under Different Experiment Settings**



Using single frequency may decrease the system performance.

A Larger augmentation rate covers more variations of the gestures.

## Conclusion

#### 04 Conclusion

Build an acoustic signal based system which can identify 15 types of gestures with high robustness and accuracy

Adopt frequency hopping scheme to mitigate FSF

Conduct data augmentation on raw CIR data to effectively train neural network models

Outperform state-of-the-art work and achieve an overall accuracy of 98.4%.



## Yanwen Wang, Jiaxing Shen, Yuanqing Zheng

The Hong Kong Polytechnic University, Hong Kong, China

INFOCOM 2020, Online July 2020