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Abstract—As a promising way, controlling smart devices
through gestures offers the benefits of non-contact interaction,
efficiency and convenience. Previous researches on acoustic-based
gesture recognition have mostly focused on near-field gestures
within 1 meter and for a single user only. However, such a near-
field sensing scheme is inadequate to meet the growing demands
for multi-person human-computer interaction in far-field spaces.
In this paper, we present a novel acoustic-based room-scale
gesture recognition system that is capable of recognizing gestures
simultaneously performed by multi-user. Our approach achieves
far-field sensing by examining the relationship between acoustic
signal frame length and sensing range, and overcoming a series
of practical challenges incurred by far-field sensing. To simulta-
neously detect and distinguish gestures of multiple persons, we
divide the sensing area into multiple beamforming sub-scanning
areas and apply binary search to detect multiple users, which
allows for an efficient scanning process and facilitates real-time
detection. Finally, we conduct a data augmentation scheme to
enlarge the training data and apply a lightweight deep learning
framework to classify different gestures. Extensive experiments
confirm that our system enables multi-user gesture detection and
can recognize nine gestures at a distance up to 7 meters.

Index Terms—acoustic, gesture recognition, far-field sensing,
channel impulse response, beamforming

I. INTRODUCTION

Motivation. As a natural, convenient and human-oriented

manner, gestures have aroused significant attention in human-

computer interaction (HCI) [2], [9], [19]. Recent years have

witnessed a massive proliferation of smart devices and ap-

plications, facilitating gesture recognition for various usage

scenarios, such as VR gaming, metaverse, remote surgery,

teaching, smart manufacturing and etc. [4], [6], [7], [20]. Many

practical usage scenarios entail far-field sensing of human

gestures, usually in a room-scale level, and simultaneous

multi-user gesture recognition. Yet most of existing works

are designed to fulfill gesture recognition tasks in near-field

scenarios (<1m) and support only a single user [4], [9], [22]–

[24], [29], which restrains the potential usage scenarios in

HCI. To bridge this gap, we aim to design a contact-free

gesture recognition system that can achieve room-scale level

and simultaneous multi-user gestures recognition.

Prior works and limitations. Existing works widely apply

vision-based method to identify gestures [2], [6], [12] since

cameras can capture the continuous motion of gestures by

tracking finger joints in real-time. Powerful deep learning

techniques are then exploited to accurately classify different

push pull tapdouble taphover

slide up slide downslide left slide right

Fig. 1. Nine Gestures in RemoteGesture.

gestures. However, vision-based method requires strict lighting

conditions and prone to raise privacy concerns.

Recent works explore the potential of radio frequency (RF)

signals to recognize human gestures based on the intuition

that human hand when performing gestures can impact the

signal propagation in terms of signal strength and phase, which

can be used to infer the gestures [1], [20]. However, RF-

based methods either suffer from inaccessibility to channel

information for most commercial devices [1] or requiring high-

cost specialized hardware (e.g., FMCW, mmWave radar and

USRP). More importantly, the singal wavelengths in most

mainstream RF techniques are too long (60mm ∼ 320mm)

to capture fine-grained finger movements, which significantly

restricts a wide range of public use.

Ultrasonic-based method exploits commodity speakers and

microphones to achieve fine-grained gesture recognition [3],

[4], [9], [11], [15], [21], [24], [33]. The merits lie in threefold:

(1) ultrasonic is able to offer sufficient resolution for capturing

finger movement due to its relatively short wavelength; (2)

acoustic devices have already been embedded in most of

smart devices, which do not incur extra hardware cost; (3)

independence of lighting conditions. As human hand will

reflect sound waves, by transmitting a known sound wave as a

probe, different types of gesture can be inferred using Channel

Impulse Response (CIR) extracted from the received sound

wave [9], [15], [24], [33].

Although those works enable complex finger movement

tracking and achieve fine-grained gesture recognition, the sens-

ing distance of those works are less than 1m, which requires

performing gestures nearby the acoustic devices. Such near-

field gesture sensing techniques deliberately discard signal

attenuation and interference beyond the scope of target sensing

distance and, thus, obtain accurate gesture recognition. RTrack

enables room-scale gesture recognition by firstly extracting

the angle at which a gesture is performed using 2D MUSIC
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algorithm and implements a room-scale tracking system [11].

Note that RTrack can effectively expand the sensing range

to 4.5m, yet is still hard to support simultaneous multi-user

gesture detection since sound waves reflected from different

hands are difficult to separate at the receiver.

Challenges. Achieving room-scale level acoustic gesture

recognition while simultaneously detecting multi-user gestures

is a daunting task. One fundamental challenge is how to ex-

pand the effective coverage area of acoustic signals to interpret

gestures from meters away. As propagation distance increases,

acoustic signal attenuates significantly. As such, subtle gesture

pattern modulated by hand in the signal becomes extremely

weak, which becomes even more unapparent considering the

round trip between hand and acoustic devices. One potential

solution is to apply high-end acoustic devices to increase the

transmission power, but this may significantly impose cost

overhead and reduce its popularity. Furthermore, detecting

gestures at a long distance yields greater disturbances caused

by the multipath effect, resulting in inconspicuous gesture

patterns.

The second challenge that we face is detecting and distin-

guishing gestures from multiple individuals at long distances.

Unlike near-field gesture recognition, simultaneously detecting

user gestures is a complex yet essential functionality in far-

field gesture recognition systems. Due to the multipath effect,

sound waves reflected from different hands superimpose at

the microphone, making it difficult to separate the different

gesture patterns. One intuitive approach is to scan the entire

space continuously and determine the angle at which different

people perform their gestures. Beamforming technique can

then enhance the signal at this specific angle and impair signals

from other directions. However, such a space scanning scheme

is time-consuming and does not meet the requirements for real-

time gesture recognition.

Solutions. In this work, we propose RemoteGesture, an

acoustic based gesture recognition system for multi-user

recognition in far-field scenarios. RemoteGesture supports

multi-user detection and can recognize nine different gestures,

as shown in Fig. 1, significantly boosting the sensing distance

of gestures to up to 7 meters away from the transceiver. Our

approach applies the Zadoff-Chu (ZC) sequence as a channel

probing signal to measure the Channel Impulse Response

(CIR), which visualizes the impact of gestures on sound waves.

The ZC sequence possesses a high auto-correlation property,

which enables it to differentiate tiny differences of multipath

signals by finding the peaks corresponding to their different

delays. More importantly, cross-correlation-based CIR mea-

surements facilitate subtle separation of multipath signals in

terms of propagation delay ranges, which greatly complements

the high auto-correlation induced probing signals.

In our study, we aim to enable far-field sensing by exam-

ining the quantitative relationship between the length of the

transmitted sound frame and sensing range. However, we do

not simply prolong the length of the emitted frame. Instead,

we synthetically consider various practical issues that may

affect the system’s performance, and conduct a parameter

|h(t, )|  

Delay( )

Time(t)

t1

t2

tn

1 2 3 k
Fig. 2. Channel impulse response.

selection scheme for designing the ZC sequence. Moreover,

to minimize the scanning time of beamforming and support

multi-user gesture detection, we adopt a simple yet effective

method inspired by the binary search algorithm. Specifically,

we divide the 180◦ area in front of the acoustic devices into

multiple subareas and apply binary search to find the exact

regions where gestures are performed.

Our contribution. Our holistic system design guarantees

that RemoteGesture achieves room-scale gesture recognition

and enables multi-user gesture detection and separation. Ex-

tensive evaluation manifests that RemoteGesture can detect

gestures 7 meters away from acoustic devices and yield a

simultaneous detection of maximum 3 users with an accuracy

up to 95.13%. We summarize our contribution as follows:

• We boost the acoustic sensing range by synthetically

correlating the length of the ZC sequence and the sensing

distance. Instead of simply using a longer transmission

frame, we deeply analyze a bunch of practical issues that

affect the acoustic attenuation and conduct a parameter

selection scheme to design a proper transmission frame.

• We deliberately apply a simple yet effective approach

originated from binary search algorithm to reduce the

scanning time of beamforming and achieve a real-time

gesture detection for multiple users.

• We design a prototype of RemoteGesture all consisted

of cost-effective and commodity acoustic devices. Exten-

sive experiments show that RemoteGesture achieves high

gesture recognition accuracy in far-field scenarios and can

simultaneously detect gestures from multiple users.

II. BACKGROUND

A. Channel Impulse Response

When a signal propagates in the air, it travels along multiple

paths due to the presence of various reflection entities in the

environment. As a result, the receiver receives multiple copies

of the signal with different delays and attenuation. CIR can

separate the multipath signals into bins or taps based on their

propagation delays, each of which corresponds to a distinct

range of propagation distance, facilitating to pinpoint signals

affected by specific target objects. By identifying appropriate

bins exclusively affected by the interested targets, we can

effectively track the movement of targets by looking into signal

fluctuations in both delay and attenuation.

To measure Channel Impulse Response (CIR), a pre-defined

frame is transmitted to probe the channel, which is then

received by the receiver. For a complex baseband signal, CIR

can be measured by calculating the cyclic cross-correlation
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Fig. 3. Beamforming

between the transmitted baseband signal and the received

baseband signal:

h[τ ] =
1

N

N∑

n=1

t[n] · r∗[n− τ ] (1)

where h[τ ] is the measured CIR, t[n] denotes the transmitted

complex baseband signal, r∗[n] is the conjugate version of r[n]
at the receiver, and τ is the multipath delays. N is the length

of t[n]. As shown in Fig. 2, h[τ ] is a matrix that characterizes

how signals with different delays τ attenuate along time t.

B. Beamforming

In complex multipath channels, directing signal energy

towards a specific direction of interest can minimize noise

and interference, leading to the amplification of target sig-

nals. Beam scanning involves steering sensor beams over a

predetermined angular range to detect signals from various

directions [8], [17]. This technique is useful in situations

where signals are arriving from multiple directions and need

to be tracked. In specific, beamforming selectively enhances

or suppresses signals that arrive at an array of sensors by

controlling their phases and amplitudes [18]. To generate a

beam pattern that amplifies signals in a particular direction

while reducing noise and interference from other directions,

a set of weights is applied to each sensor’s signals. These

weights can be optimized based on the signal-to-noise ratio

(SNR) or a desired radiation pattern.

Beamforming techniques leverage the multipath effect and

the geometric layout of the sensor array. The sensors receive

successive copies of the transmitted signal with varying de-

lays and strengths. As a result, the signal received in each

receiver of the array is a copy of the transmitted signal

while exhibiting diverse attenuation and phase shifts that may

induce destructive interference of the signal. As shown in Fig.

3(a), assume that a microphone array is composed of three

uniformly deployed microphones, denoted as M1, M2, and

M3. When sound waves reach the array, each microphone

receives identical copies of the signal with different delays

(Fig. 3(b)). If we take the signal received by M2 as a reference

signal and assign proper weights (phases) to M1 and M3

based on their geometric relationship, the signals can be

180°
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Fig. 4. Overview of system.

aligned perfectly (Fig. 3(c)) and the combined signal energy is

concentrated effectively, as shown in Fig. 3(d). In other words,

by adjusting the phase of the signals received by each sensor,

beamforming can create a directional beam that maximizes

signal strength in a specific direction while minimizing signal

strength in other directions. Therefore, the effective use of

beamforming techniques can significantly enhance the quality

of sound transmission and reception.

III. SYSTEM DESIGN

A. Overview

Fig. 4 depicts the system overview of RemoteGesture. Re-

moteGesture consists of three modules. In transceiver design,

a commodity speaker continuously emits a predefined sound

wave to probe the channel, which is then received by a

circular microphone array. To receive a reliable signal, the

emitted sound wave is carefully designed and transformed

to support far-field gesture sensing and alleviate interference

in practical environments. Then, the gesture detector will

perform a two-stage progressive beam scanning scheme to

scan the space where gestures may occur, which can timely

detect the direction that is most closely associated with the

gesture. With this estimated direction, sound waves reflected

from the hand can be remarkably enhanced. Note that our

two stage scheme also supports simultaneous detection of

gestures performed by multiple users. CIR of the enhanced

signal is then measured for visualizing channels impacted by

the gestures. In gesture interpreter, we apply a lightweight

convolutional neural network to extract features from CIR

measurements and perform gesture recognition.

B. Transceiver Design

The transceiver consists of a collocated commodity speaker

and a microphone array. The speaker unceasingly transmits a

predefined sound frame, while the microphone array receives

those frames. In our system, we apply the ZC sequence as

the baseband transmission signal. First, the ZC sequence has

been proven to possess higher auto-correlation with narrow

side lobe level [15] compared to other mainstream sequences,

such as Training Sequence Code, Barker Sequence, and M-

sequence. A higher auto-correlation of the transmission frame

(sharper main lobe) guarantees easier separation of sound
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Fig. 5. Bandwidth of three ZC passband sequences.

copies with close delays generated by complex finger move-

ment. Second, the transmitted frame should cover a certain

range of frequency band to carry effective information imposed

by gestures and mitigate frequency-selective fading. In addi-

tion, the transmitted ZC sequence should reside in a frequency

band ranging from 18KHz to 24KHz such that it is inaudible

to users [16] and does not pose any disturbance. Typically,

the ZC sequence has a constant amplitude covering a range of

frequencies, whose bandwidth can be configured with careful

parameter selection to satisfy those practical requirements of

gesture sensing.

ZC sequence is a complex value sequence, which can be

generated as follows:

ZC[n] = e
−j

πun(n+cf+2q)
NZC (2)

where NZC is the length of the sequence, which is usually an

odd number and can be configured based on specific require-

ments. 0 � n < NZC , 0 < u < NZC and gcd(NZC , u) = 1.

cf = {NZC mod 2} = 1 and q is an integer indicating the

cyclical shift of Chu sequence by q, where Chu sequences is a

special case of ZC sequence when q = 0. ZC[n] denotes the

n − th elements of the ZC sequence. In our design, cf = 1
and we set q = 0 to simplify the parameter configuration.

Therefore, two parameters u and NZC jointly determine the

ability of ZC sequence carrying information of gestures.

Traditional works use a longer transmitted frame to cover

a wider sensing range. With the support of a sampling rate

of fs = 48KHz by commodity acoustic devices, we can

calculate the sensing distance d = NZC×c
2fs , where c = 340m/s

is the speed of sound propagation in air. In order to enable

room-level gesture sensing, which covers a range of approx-

imately 7m, we target to set NZC = 2048. However, our

experiments have verified that simply configuring NZC to

2048 results in extremely high-pitched screaming of sound,

since the frequency of the transmitted ZC sequence leaks into

the audible band below 18KHz.

To meet the inaudibility requirement, we apply interpolation

scheme in frequency domain of a short ZC sequence and

extend the length of ZC sequence to 2048. Specifically, we

first apply Fast Fourier Transform (FFT) to convert the short

ZC sequence into the frequency domain and symmetrically pad

multiple zeros outside its original frequency components. After

zero-padding, we transform the interpolated sequence back

into the time domain using Inverse Fast Fourier Transform

(IFFT). Such an interpolation scheme in frequency domain

results in sharper auto-correlation peak than that in time

domain [15]. Note that the bandwidth of the interpolated
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Fig. 6. CIR Measurement for gestures at 6m.

baseband signal is B = fs×NZC

N
′
ZC

, where NZC and N
′
ZC denote

the sequence length before and after interpolation, respectively,

and fs denotes the signal sampling rate.

To transmit channel probe signal in inaudible band, we up-

convert the baseband signal to the inaudible band with a carrier

wave fc. Specifically, the real and imaginary parts of interpo-

lated baseband ZC sequence are multiplied by cos 2πfct and

− sin 2πfct, respectively, and then are summed to form the

passband signal. A high-pass filter is applied to exclude any

out-of-band noise and interference. Note that the transmitted

frame can be saved in audio-compatible files (e.g., WAV,

MP3), and can be continuously played by current commercial

speakers. At the receiver side, due to asynchronization of

speaker and microphone, the first sample of the received ZC

frames can be pinpointed using cross-correlation between the

transmitted frame and received signal. This allows for the

subsequent frames to be aligned due to the fixed frame length.

Note that low-frequency components in the environment and

other interferences, such as human speech and music, are

filtered out by simply applying a high-pass filter. Then we

perform down-conversion to the synchronized passband signal

by multiplying cos 2πfct and − sin 2πfct to generate the real

and imaginary part, respectively, followed by a low pass filter

to remove high-frequency interference.

Fig. 5 shows frequency domain of three passband ZC

sequences with different u and NZC pairs. All ZC sequences

are expanded to 2048 samples using our interpolation scheme.

We perform up-conversion to obtain passband sequences with

a carrier wave at fc = 20.25KHz. The bandwidth for

passband ZC sequences with parameters of (32, 63), (64, 127),
and (128, 255) are 1.5KHz, 3KHz, and 6KHz, respectively.

On one hand, rich multipath in a far-field sensing range

aggravates the frequency selective fading (FSF), leading to

inadequate channel measurements if a probing signal only

covers a 1.5KHz bandwidth. On the other hand, although

6KHz bandwidth contributes to capture sufficient channel

measurements and theoretically satisfies inaudible frequency

range, filters applied to up-conversion and down-conversion

inevitably incur frequency leakage into the audible band due

to imperfect frequency responses. Thus, after comprehensive

consideration, we select the ZC sequence with u = 64 and

NZC = 127, which covers a 3KHz frequency band ranging

from 18.75KHz to 21.75KHz, enabling a sufficient band-

width for reliable channel measurement while fully residing

in the inaudible band.

We conduct an experiment to validate our parameter se-

lection and interpolation scheme for detecting gestures in the
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far-field. During the experiment, a speaker and microphone

array continuously transmits and receives the designed signal

frame using the aforementioned parameters and interpolation

scheme. A user is requested to stand 6 meters away from

the acoustic devices and perform push and pull twice. Fig. 6

illustrates the measured CIR, which clearly exhibit observable

gesture patterns even at a distance of 6m. The experiment

results demonstrate that the chosen parameters and interpola-

tion scheme effectively increase the sensing distance of the

acoustic signal and allow reliable channel measurements for

the far-field sensing.

C. Beamforming Scanning

Our objective is to simultaneously detect gestures from mul-

tiple users. Traditional beamforming techniques employ con-

tinuous scanning of the entire space to identify the directions

most associated with the gesture. Based on these directions and

geometric layout of sensor array, different weights are assigned

to corresponding receivers in the array. By doing so, signals

from specific directions where different users perform gestures

are enhanced, at the same time signals from other directions

are attenuated. Although the space scanning method enables

precise angle-of-arrival (AoA) estimation, the scanning time

is too long to satisfy the real-time requirements of our gesture

recognition system. Intuitively, a higher resolution of scanning

results in more precise direction estimation while imposing

longer scanning time, and vice versa.

To meet real-time of gesture detection, we design a simple

yet effective scheme inspired from binary search algorithm.

The core idea is to balance the resolution of scanning and

direction estimation precision. To determine the lowest reso-

lution for scanning while still being capable of detecting ges-

tures, we fully exploit the geometric relationship between the

human body and acoustic devices during gesture performance.

Specifically, we measure the angle of a certain sector area

between acoustic devices and two shoulders of the user at a

distance of 7m as the lowest scanning resolution, as illustrated

in Fig. 7. Taking into account practical usage scenarios, we

extend a 1 meter distance at each side of the shoulder since

multiple users are less likely standing within such a small

area in far-field gesture sensing. To mitigate individual stature

differences, we ask multiple volunteers, including those of

different genders, heights, and figures, and the measured sector

angle ranges from 18◦ to 22◦. Therefore, w.l.o.g, we finally

configure the lowest resolution for beam scanning to 20◦.

However, such a scanning resolution still challenges the

real-time performance for RemoteGesture, as it requires 9
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Fig. 9. CIR Measurement in different directions.

scans to determine the direction. To further reduce the scan-

ning time, we propose a two-stage progressive scanning

scheme, as shown in Fig. 8. First, we divide the semicircular

region into three 60◦ sector regions and execute beamforming

on each sector to determine approximate regions where users

are performing gestures (we will explain how to find those

regions in detail in Section III-D). In the second stage, we

further divide each 60◦ sector region into three 20◦ sub-sectors

and perform beam scanning on each sub-sector to pinpoint the

exact direction associated with the gesture. It is important to

note that beamforming in sub-sectors is only conducted for the

parent sector where the gesture is detected in the first stage.

Such a scheme enables more than 3 user gestures recognition.

Users can be located at random positions rather than being

restricted to the assigned sectors. Our approach reduces the

scanning complexity from O(N) to O(logN) for detecting a

gesture, resulting in reduced scanning time.

D. Channel Estimation

In this section, we will introduce how to determine the

region where gestures are performed using CIR measure-

ments. Note that CIR can separate received multipath signals

in different delays, providing a basis for detecting gestures

performed at different distances. However, the lack of azimuth

information in CIR makes it inaccessible to simultaneously

detect gestures from multiple users. As a complementary

method, our beam scanning scheme enables the measurement

of azimuth information. Our key idea is that CIR measured

from regions where users perform gestures exhibit a much

stronger pattern than other non-gesture directions. Therefore,

we first generate the CIR measurements for each selected area

and then design an effective method to find the area mostly

related to gestures based on CIR amplitude.

Fig. 9 shows CIR measurements when different users

perform gestures at the same distance while in different

directions to the acoustic devices. In this experiment, we ask

two volunteers standing at 3m to RemoteGesture while in

different directions (i.e., 45◦ and 135◦). First, user1 in 45◦
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direction performs push and pull two times while user2 keeps

static. Then, user2 in 135◦ direction performs double tap four

times while user1 remains stationary. Finally, user1 performs

push & pull and user2 performs double tap simultaneously.

Beamforming is executed at 45◦, 90◦ and 135◦, respectively.

From Fig. 9 we obtain two key observations based on

the measured CIR measurements: (1) matching the beam

scanning with the direction in which gesture is performed

results in significantly stronger gesture pattern than those

in another two sectors (i.e., Fig. 9(a), Fig. 9(f), Fig. 9(g)

and Fig. 9(i) are stronger than the others). Additionally,

different gestures exhibit distinguishable features in the CIR

patterns (i.e., Fig. 9(a) and Fig. 9(g) are push and pull, while

Fig. 9(f) and Fig. 9(i) are double-tap); (2) when two users

perform gestures simultaneously, beamforming at each user’s

direction generates different CIR patterns (i.e., Fig. 9(g) and

Fig. 9(i)). The other bright paths in the CIR measurement

in Fig. 9 are multipath reflections from the far-field space.

This experiment demonstrates that our beam scanning and

beamforming scheme can effectively distinguish simultaneous

multiple gestures even from the same distance. After coarsely

finding the gesture region, we further divide the 60◦ region

into three 20◦ regions and perform beamforming to determine

the fine-grained gesture direction.

We apply a simple yet effective method to determine the

region where users perform gestures. Our intuition is that

CIR amplitude can be significantly enhanced when the regions

where users perform gestures precisely match the sectors exe-

cuted by beamforming. On the contrary, if the gesture regions

do not match the beamforming sectors, the CIR amplitude

will remain the same. Therefore, we determine the sector as

targeted gesture region by finding the largest average CIR

amplitude for each candidate sector. Specifically, we first set

a threshold for filtering the CIR amplitude in each sector.

CIR amplitudes below this threshold can be considered as

interference caused by weak multipath copies of the gesture,

which are set to zero value, as those amplitudes in yellow

rectangle shown in Fig. 10. Next, we measure two indicators

that can profile the amplitudes of CIR: (1) the number of

non-zero grids and (2) the average value of non-zero grids.

The number of non-zero grids quantitatively represents how

many reflection paths from hand are successfully captured by

CIR, while the average value of non-zero grids demonstrates

the overall quality of the hand reflected signals. The gesture

regions are pinpointed only if both two indicators satisfy a

pre-defined threshold.

CIR amplitudes in red rectangle in Fig. 10 are caused by

other parts of human body, such as torso, arm and elbow.

We notice that those CIR amplitudes are at the same level as

those caused by hands, and cannot be easily removed with

a small threshold. However, we discover that movements of

torso, arm and elbow are intrinsically involved in a gesture. For

example, if a user performs push or pull, in addition to finger

movements, the arm and elbow also move simultaneously,

which can be regarded as a useful feature for recognizing

gestures. Therefore, instead of removing those CIR ampli-
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Fig. 10. CIR measurement of four double-tap gestures. Yellow rectangle:
multipath caused by weak reflections and red rectangle: multipath caused by
human body.

tudes, we synthetically consider them as a part of gestures

and reserve such amplitudes for gesture recognition.

E. Gesture Recognition

Gesture interpreter extracts features from CIR measure-

ments and classifies them into different gestures. Neural

networks have demonstrated excellent performance in image

classification, while requiring massive amount of data to

achieve high accuracy and strong robustness. To release the

heavy burden of manual data collection, we conduct a data

augmentation technique similar to the one used in [24] to

automatically enlarge the training dataset.

Specifically, CIR measurements of a gesture obtained at

varying distances from the transceiver exhibit vertical drift in

CIR taps, while different moving speeds of gestures result in

horizontal stretching and compression of CIR measurements

[24]. These two key observations motivate us to automatically

enlarge the gesture training data for different distances and

hand moving speeds. Note that our data augmentation tech-

nique differs from the previous technique used in RobuCIR.

Instead of simply shifting each CIR measurement in all taps,

we shift the CIR measurements within a certain range of taps.

Restricting the range of drifting taps enables a more effective

representation of gestures, since CIR measurements involve

similar patterns when gestures are performed at close regions.

In our study, we employ MobileNetV2 as the gesture clas-

sifier, given its lightweight neural network structure and low

computational overhead that suits mobile devices with limited

computing resources [14]. The real-time detection require-

ment of multi-user gestures in RemoteGesture necessitates

fast processing during gesture classification. MobileNetV2

employs lightweight depthwise convolutions to filter features,

which reduces computational overheads by approximately one-

eighth of traditional convolutional methods while without

compromising performance [14].

The input of our classifier is a CIR image with size of

H × W , where H is image height and W is image width,

respectively. First, 32 convolution kernels, each with a size of

3×3, normalize the input CIR image. Then, 19 residual bottle-

neck layers extract the features of the input image. Following

this, an average-pooling layer performs global average pooling

on the extracted features, resulting in 1×1×1280 eigenvectors.

Finally, the fully connected layer connects the feature vectors

and outputs a 1 × 9 probability vector, which represents the
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Fig. 11. Commercial speaker and microphone and three different rooms.

classification rank of the nine gestures. The predicted gesture

is the one with the highest probability.

IV. EXPERIMENTS AND EVALUATION

A. Experiment setup

1) Hardware: Our transceiver consists of a commercial

speaker and a circular microphone array, as shown in Fig.

11(a). We apply google AIY Voice Kit version 2.0 including

a speaker with a maximum power of 3W and a Raspberry

Pi Zero to control the speaker to transmit the acoustic signal

frame in the inaudible band continuously. The audio frames are

received using the ReSpeaker 6-Mic Circular Array Kit with a

signal sampling rate of 48KHz, which supports a maximum

24KHz audio signal.

2) Data collection: We select the root ZC sequence with

u = 64 and Nzc = 127, and the interpolated sequence

length is N
′
ZC = 2048. We invite six volunteers (four

males and two females) to perform nine gestures at various

distances and angles relative to the RemoteGesture in three

rooms with different sizes and layouts. These rooms are sized

6m × 3m × 3m, 7m × 4.5m × 3m and 9m × 9m × 3m,

respectively, as shown in Fig. 11(b)-11(d). In each room,

we ask volunteers to stand or sit still in different positions

depicted in Fig. 13 and perform gestures at a natural speed.

A maximum of three users are allowed to perform gestures

simultaneously during the experiment. Each gesture is repeated

20 times at each position, resulting in a total of 2700 gesture

samples collected from 15 distinct positions. We implement

data augmentation on the real gesture samples with rate =

100×. Specifically, we shift each real CIR measurement within

572 taps (corresponding to a 2m shifting range, 1m above and

below), followed by a 0.5× ∼ 1.5× horizontal compression

and stretching (representing 0.5s ∼ 2s for each gesture). The

augmented dataset matches the gesture variations covering

real-world scenarios.

3) Model Training: The gesture classifier is trained and

tested using PyTorch on a laptop equipped with a 32 GB
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Fig. 12. Overall performance.

memory, a 12th Generation Intel Core i7 − 12700H CPU,

and an NVIDIA GeForce RTX 3060 Laptop GPU. The dataset

is separated with 70% for training and 30% for testing,

respectively. We utilize 10-fold cross-validation during model

training and testing. The training process is a one-off step and

the trained model is 8.8M , which can be stored offline.
4) Benchmark: We compare the performance of our Re-

moteGesture with the state-of-the-art approach named Robu-

CIR [24]. As RobuCIR only supports near-field gesture sens-

ing, we fix the distance between hand and speaker-microphone

pair to 1m while performing gestures at different angles (i.e.,

45◦, 90◦, and 135◦). We use the same setting in [24] and

apply the configuration above to implement RobuCIR and

RemoteGesture, respectively.

B. Evaluation

1) Overall system performance: Fig. 12 shows the overall

performance of RemoteGesture across all 9 gestures. For this

evaluation, we use a combination of augmented data and real

collected data from all three rooms for training and testing.

Our RemoteGesture achieves an average recognition accuracy

of 97.8% with each gesture exceeding 95% accuracy, even

when performed at different distances and angles in multi-

user scenarios. With our holistic design, RemoteGesture can

recognize gestures simultaneously performed by multi-users at

distances up to 7m, significantly extending the usage scenarios

of acoustic-based gesture recognition.
2) Performance on different distances and angles: We

evaluate the average recognition accuracy for all 9 gestures

performed at various distances and angles, as illustrated in

Fig. 13. In this experiment, volunteers perform 9 gestures

at each position, with each gesture repeated 100 times. At

each position, we apply 10× data augmentation on the real

gesture samples, in which 70% are used for training and 30%
for testing. RemoteGesture achieves an accuracy higher than

94% at all 15 positions. The average accuracy at 5m in all

directions exhibits only a 0.68% decrease compared to the

average accuracy at 1m, which reveals the high robustness of

our RemoteGesture. In addition, although recognition accuracy

decreases with increasing distance, RemoteGesture maintains

an average accuracy of 95.4% at 7m, which manifests its

capability for far-field sensing. We note that accuracy exceeds

5m can be further improved by using high-end acoustic

devices with higher Tx/Rx antenna gain.
3) Performance on multiple users: To evaluate the ability of

RemoteGesture identifying multiple simultaneously performed
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TABLE I
RUNNING TIME OF REMOTEGESTURE

CIR Calculation (ms) Beamforming (ms) Gesture Recognition (ms)
Frame

Detection
Down

Conversion
CIR

Binary
Search

MobileNetV2

111 10.2 33 200 36.9

gestures, we conduct an experiment with three volunteers. We

ask one, two and three volunteers to stand at different distances

(i.e., > 3m) and angles from RemoteGesture, respectively.

Each volunteer is allowed to randomly perform 3 different

gestures at each position with each gestures being repeated 100
times. The gesture samples are divided into 70% for training

and 30% for testing, respectively.

Fig. 14 shows the experiment results. RemoteGesture

achieves a recognition precision of 98.4% and 95.4% for two

and three users simultaneously performing gestures, respec-

tively, which are slightly lower than the single-user scenario.

The recall and F1 score all exceed 95%. The results demon-

strate that our system can effectively detect and distinguish

each gesture in multi-user scenarios while maintaining the

recognition ability.
4) Comparison with RobuCIR: We compare our Re-

moteGesture with RobuCIR. As depicted in Fig. 15, Re-

moteGesture achieves an accuracy of 99.7% in recognizing

gestures from different angles, surpassing RobuCIR’s accuracy

of 95.8% in the near-field scenario. This is attributed to

our two-stage progressive beam scanning and beamforming

scheme, which concentrates the energy of the reflected signal

from the hand, thereby enhancing the signal-to-noise ratio of

the received signal. As such, more distinguishable patterns

can be captured by CIR measurements, which can then be

successfully learned by neural network.
5) Execution Time: Table I shows the processing time

of each step involved in RemoteGesture. Specifically, frame

detection is performed only once at the beginning of the

received signal, which takes 111ms. The processing delay for

measuring CIR for a gesture is 33ms. Based on our beamform-

ing scheme, a maximum of six beamforming scannings need

to be executed for detecting a gesture, which cost approximate

200ms with 33ms for each beamforming scanning. The time

for identifying a gesture using our MobileNetV2 model is

36.9ms. Therefore, the overall processing delay takes less than

0.5s, which satisfies the real-time requirement.

V. RELATED WORK

A. Vision Based Gesture Recognition

Powerful cameras, along with the emergence of deep learn-

ing technologies, facilitate gesture detection and classification

in a contact-free manner using vision-based methods [2], [6],

[7], [12], [13]. A CNN-based dense hand pose estimation is

proposed, aiming to reconstruct 3D hand shapes and poses

from a single RGB image [2]. FOANet [12] shows signif-

icantly improved gesture recognition results on two publicly

available datasets, which utilizes global channels to process the

whole gesture video to look for gross motions while focused

channels to detect and process each hand. However, the usage

scenarios of these methods are restricted by their reliance on

good lighting conditions.

B. Radio Frequency Based Gesture Recognition

The promising RF sensing technology has been widely

applied to human activity recognition [1], [5], [19], [20], [25],

[26], [30], [32]. The intuition is that human motion impacts the

RF signal propagation in terms of signal strength and phase.

RF-Finger [20] deploys a RFID tag array to continuously

measure the changes of backscattered signals and recognizes

the gestures performed in front of the antenna. EUIGR [32]

collects phase and received signal strength from the RFID

tags and uses neural networks to learn gestures’ features to

build a realtime gesture-driven interactive system. WiMU [19]

supports simultaneous multiple gesture detection based on

virtual sample combinations of different gestures. WiGest [1]

realizes gesture recognition nearby mobile devices based on

changes in RSS and CSI without requiring any pre-training.

However, these approaches either require costly specialized

devices or bear low resolution of sensing due to relatively

long wavelength of RF signals.

C. Acoustic Based Gesture Recognition

Currently, speakers and microphones have embedded in

almost every smart device, which enables economy and con-

venience for achieving sensing tasks [3], [4], [9]–[11], [15],

[21]–[24], [27]–[29], [31], [33]. Vskin [15] performs fine-

grained touch gesture recognition on the surface of mobile

devices by measuring amplitude and phase of sound signals.

RobuCIR [24] can recognize 15 gestures by measuring CIR

and adopting frequency hopping mechanism and data en-

hancement technology to overcome the problems of frequency

selective fading and insufficient training data. PDF [4] pro-

poses a method based on phase difference to extrapolate time

delay of FMCW signal to infer the absolute distance, which

can recognize tiny movements of fingers. Those works can

accurately identify gestures in near-field scenarios (i.e., <1m)

by intentionally discarding the far-field interference. RTrack

[11] implements a room-scale hand motion tracking system
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with a range up to 4.5 meters by using 2D MUSIC (multiple

signal classification) algorithm to overcome low signal-to-

noise ratio and rich multipath propagation of reflected signals

at long distances. However, recent works merely focus on

gesture sensing for a single individual. Unlike those works, Re-

moteGesture achieves room-scale gesture detection (i.e., 7m)

and supports simultaneous gesture recognition for multiple

users.

VI. CONCLUSION

We present RemoteGesture, a room-scale gesture recogni-

tion system based on acoustic signals that can detect gestures

simultaneously performed by multiple users. RemoteGesture

overcomes a series of practical challenges occurred in far-field

sensing scenarios and boosts the sensing range to 7 meters.

RemoteGesture supports simultaneous gestures from multiple

users by applying beamforming technique. To satisfy real-

time gesture detection, we reduce the space scanning time

inspired from the binary search algorithm. Extensive experi-

ments demonstrate that RemoteGesture can achieve over 95%
recognition accuracy at 7 meters under multi-user scenario.
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