ShakeReader: ‘Read’ UHF RFID using Smartphone

Kaiyan Cui1,2, Yanwen Wang3, Yuanqing Zheng1, Jinsong Han4

1The Hong Kong Polytechnic University, Hong Kong, China
2Xi’an Jiaotong University, Xi’an, Shaanxi, China
3Hunan University, Changsha, Hunan, China
4Zhejiang University, Hangzhou, Zhejiang, China
Background: RFID for Retailers

Retailers can benefit tremendously from RFIDs.

- Asset Tracking
- Supply Chain Management
- Automated Inventory
- ...

Importance for retailers
Background: RFID for Customer

- Where is RFID?
- What does RFID do for me?

Customers **cannot** benefit from deployed RFID infrastructure because that UHF RFIDs are **not supported** by current smart devices!
Our Goal

We aim to enable customers to ‘read’ RFID tags by bridging the gap between the deployed RFID infrastructure and smartphones

Tag information:
updated price, matching tips, real-time promotion, logistics information, ...

New applications

➢ For customers:
 + Item-specific information
 + Product safety
 + Product traceability
 + ...

➢ For retailers:
 + Customer shopping behaviour
 +
Existing Solutions

❖ Handheld readers

- Expensive
- Extra hardware
- High power consumption
- Do not support one-to-one interaction

❖ Cross-technology communication[1]

- Do not support one-to-one interaction

Customers will receive so many tag information for one scan and it is difficult to find the desired one.

We leverage the **synchronicity of RFID data and sensor data** caused by **the same smartphone gesture** to ‘read’ the interested RFID tag.
Challenge

In our scenario:
• Only one RFID tag
• The tag is attached to an item
• Both the item and the RFID reader are fixed

How to design a smartphone gesture, which can be detected by one static tag?
Solution: Reflector Polarization

❖ Key Observation:

The rotation of the rectangular reflector will affect the received signal, even though both tag and antenna remain static.
Solution: Reflector Polarization

Key Observation:

- differences in length and width of the reflectors
- the signal reflected along the long axis dominates the reflected signal strength

Key Observation:

The rotating polarization of rectangular reflector will affect the tag’s phase values, even though both tag and antenna remain static.
Reflector Polarization Model:

- Received Signal $R(t)$
 1. Antenna-Tag- Antenna
 2. Antenna-Tag-Reflector-Antenna
 3. Antenna-Reflector-Tag-Antenna

$$R(t) = S_{A \rightarrow T \rightarrow A}(t) + S_{A \rightarrow T \rightarrow R \rightarrow A}(t) + S_{A \rightarrow R \rightarrow T \rightarrow A}(t) = f(\alpha, \beta, \gamma, d_{A \rightarrow T \rightarrow R \rightarrow A})$$

The propagation distances and the polarization directions of tag, reflector, and antenna jointly affect the received backscattered signal.
Solution: Reflector Polarization

We leverage the **smartphone rotation** as the interactive gesture to specify user’s interest in a static tag.
We design a **combined gesture** to prevent the influence of other human activities.
Smartphone Gesture

Clockwise Rotation (2.1)
Counter-clockwise Rotation (2.2)

(1) Approach

(3) Departure

Item with RFID tag

How to detect this smartphone gesture?
1) Starting Point and Finishing Point Detection: measure the standard deviation of phase and acceleration readings.

2) Approach and Departure Detection: the phase values fluctuate with the distance change between the tag and the phone. Acceleration-Y readings fluctuate slightly.
1) **Starting Point and Finishing Point Detection**: measure the standard deviation of phase and acceleration readings.

2) **Approach and Departure Detection on phase readings**: find approach pattern and departure pattern based on fluctuation range.

Fluctuation range: the difference between two adjacent local maximum and local minimum.
3) **Rotation Detection**: phase values: ‘W’ shape. Acceleration-Y readings: ‘M’ shape. We utilize **DTW algorithm** to detect this symmetric rotation.
How to match the interested tag with its corresponding smartphone user?
Matching

- Synchronicity between RFID data and sensor data

Three key timing information:
- Symmetric point timestamp
- Starting point timestamp
- Finishing point timestamp

We extract the three key timing information to match the interacted tag with its corresponding smartphone user.
Evaluation

• Experimental Scenarios:
 - typical office room
 - a shelf Scenario

• Hardware:
 - Impinj R420 reader
 - Larid antenna A9028
 - three kinds of commercial tags
 - three kinds of smartphones with different materials

• Metrics:
 - Accuracy
 - False Accept Rate (FAR)
 - False Reject Rate (FRR)
Evaluation

• RFID based Smartphone Gesture Detection
 • Impact of smartphone-to-tag distance
 • Impact of smartphone materials
 • Impact of tag-to-tag distance
 • ...

• Overall performance
 • System accuracy
 • System latency
Impact of smartphone-to-tag distance

Detection accuracy of three kinds of tags with different smartphone-to-tag distances

- Average accuracy: over 95%
- A user needs to make smartphone gesture within 10 cm
• Almost all the gestures performed using smartphones with different back cover materials can be detected.
Impact of tag-to-tag distance

- Larger tag-to-tag distance \rightarrow higher accuracy
- When the tag-to-tag distance exceeds 15cm, our system can detect almost all gestures.
Overall performance

- ShakeReader achieves the matching accuracy of >94.6% in the case of multi-user interaction.
- The accuracy of ShakeReader reaches 96.9% and FRR is 2% under shelf scenario.
Execution time of each key component in ShakeReader

- the average processing time is 7.6ms for each smartphone gesture matching, which is acceptable for most interaction applications.
Conclusion

• We propose the **ShakeReader** to bridge the gap between customers and RFIDs without making any hardware extension.

• We propose the **reflector polarization model** and design an interactive smartphone gesture.

• We implement ShakeReader on the COTS devices and it can accurately pair interested tags with their corresponding smartphones with an accuracy of >94.6%.
Thank you!

kaiyan.cui@connect.polyu.hk