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4 Abstract—Respiration monitoring (RM) is crucial for tracking various health problems. Recently, RFID has been widely employed for

5 lightweight and low-cost RM. However, existing RFID-based RM systems are designed for static environments where no people move

6 around the monitored person. While, in practice, most environments are dynamic with people moving nearby, which introduces

7 dynamic multipath signals and significantly distorts the respiration signal, leading to inaccurate RM. In this paper, we aim to realize

8 accurate RFID-based RM in dynamic environments. Our observations show that multipath signals can result in a similar pattern to

9 respiration, which leads to mis-detection of apnea and inaccurate respiration rate estimation. To address this issue, we first measure

10 the respiration anomaly in the signal spectrogram to detect apnea. Second, we successfully remove the multipath effect for respiration

11 rate estimation inspired by the intrinsic features of human respiration. Specifically, compared with people’s moving pattern, respiration

12 pattern is regular and periodic. By transforming a normal respiration cycle into a matched filter, real respiration cycles can be extracted

13 from the noisy RFID signal, which can be applied to estimate the respiration rate via peak detection scheme. The experiments show

14 that our system achieves the average error of 4.2% and 0:51 bpm for apnea detection and respiration rate estimation in dynamic

15 environments, respectively.

16 Index Terms—Respiration monitoring, RFID, dynamic environment, multipath effect

Ç

17 1 INTRODUCTION

18 RESPIRATION state is not only an important indicator
19 for reflecting the respiratory conditions but also highly
20 related to the overall homeostatic control for human health.
21 Respiration state of a human shows early signs for many
22 diseases, e.g., sleep apnea [1], hypoxia [2], and chronic
23 obstructive pulmonary disease (COPD) [3]. In addition,
24 monitoring respiration state can help to prevent the disease
25 deterioration for patients in a sensitive and accurate way
26 [4]. Therefore, accurate and continuous respiration monitor-
27 ing (RM) is highly demanded for people suffering from var-
28 ious health problems.
29 However, traditional respiration monitoring (RM)
30 approaches that use wearable devices are either cumber-
31 some or intrusive to users. For example, the chest belt/nos-
32 tril sensors, which are tightly bound on the chest/nose,
33 could make users feel uncomfortable when being moni-
34 tored. Recently, radio frequency (RF) signals have shown
35 great potential for non-intrusive RM, which aims to release
36 people from wearing bulky sensors [5], [6], [7], [8], [9], [10],
37 [11]. Among different RF technologies, RFID has been well
38 investigated for RM due to the small, lightweight, and flexi-
39 ble properties of passive RFID tags [12], [13], [14], [15],

40which offer a non-intrusive way for RM by simply attaching
41RFID tags on the chest. Meanwhile, RFID tags are cost-effec-
42tive (0.1-0.2 USD per tag) and can be applied for large-scale
43deployment. The intuition of RFID-based RM is that the
44tiny periodic chest movement during breathing can be cap-
45tured by tracking the movement of the tag on the chest.
46RFID technology has many advantages over other RF
47technologies for RM. First, the WiFi-based method is hard
48to support multi-person RM. Although some works imple-
49ment WiFi-based multi-person RM [5], [7], they require
50prior knowledge of the number of persons. In addition,
51WiFi-based methods fail to match the respiration rate to
52each corresponding person. However, thanks to the stan-
53dard EPC communication protocol, multi-person RM can be
54achieved and separated via the unique ID of tags attached
55on different persons chests. Compared with the radar-based
56methods, which require specialized RF devices [10], [11],
57the commodity RFID devices are widely used in the market.
58Thus, using RFID can provide a more pervasive RM for
59public use.
60However, current RFID-based RM systems can only
61monitor the person in a relatively static environment where
62no people move around so that the tiny chest movement
63caused by human respiration can be correctly measured
64[12], [13], [14], [16], [17]. As depicted in Fig. 1a, a person is
65monitored in a static environment, and the measured respi-
66ration signal from the RFID tag shows a clear periodic respi-
67ration pattern. However, in dynamic environments with
68people moving nearby, as shown in Fig. 1b, the measured
69respiration signal becomes noisy. This is because the sur-
70rounding people incur dynamic multipath signals, which
71are superimposed with the desired line-of-sight (LOS) respi-
72ration signal of the monitored person. As a result, the respi-
73ration pattern in the RFID signal would be distorted, which
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74 could result in inaccurate RM results. In this work, we pro-
75 pose RM-Dynamic, which aims to remove the effect of mul-
76 tipath signals in dynamic environments for realizing robust
77 RFID-based RM with accurate apnea detection and respira-
78 tion rate estimation.
79 To achieve this goal, we first elaborate how the dynamic mul-
80 tipath signals from moving people affect the respiration signal of
81 the monitored person. Previous works only model the effect of
82 multipath signals based on the signal path change [18], [19].
83 However, the change of the RFID signal (e.g., signal phase)
84 incurred by the multipath signals is subject to many factors,
85 e.g., the antenna radiation range, people’s moving area, and
86 movement pattern. In our work, we perform a detailed
87 investigation of these effects on the RFID signal in terms of
88 the signal phase. In specific, we find that multipath signals
89 caused by moving people can introduce a similar pattern in
90 the signal phase as that resulting from the chest movement
91 during respiration. As a result, multipath signals could dis-
92 tort the original respiration signal with both high-frequency
93 noises and fake respiration cycles, which lead to inaccurate
94 respiration state measurements.
95 The second task is to remove the effect of multipath signals for
96 accurate apnea detection. In dynamic environments, the sur-
97 rounding movements can result in the missing detection of
98 apnea, which is a respiratory anomaly of sudden cessation of
99 breathing. This is because the phase of multipath signals may

100 occasionally exhibit a sinusoidal wave, which shares a similar
101 pattern to the respiration signal, even if when the monitored
102 person stops breathing with no chest movement. This would
103 misguide that themonitored person is still breathing and lead
104 to the missing diagnosis of apnea. To address this issue, we
105 investigate the spectrogram of respiration and multipath sig-
106 nals in the frequency domain. In specific, we compare the
107 dominance of their frequency components within the respira-
108 tion frequency range. For the respiration signal, the most
109 dominant frequency components fall into the respiration fre-
110 quency range. In contrast, the frequency components ofmulti-
111 path signals are less dominant in the respiration frequency
112 range. With this in mind, we define a respiration-dominance
113 index (RDI) which counts the number of dominant frequen-
114 cies within the respiration frequency range in the spectro-
115 gram. The measured RDI is compared with a reference RDI
116 obtained from the normal respiration signal to differentiate
117 the apnea out of themultipath signals.
118 The third task is to remove the effect of multipath signals for
119 accurate respiration rate estimation. To achieve this, we borrow

120insights from the inherent features of the human respiration
121pattern. Human-beings have a regular and periodic respira-
122tion rhythmwhich is unique and diverse among individuals
123[20]. Compared with the irregular patterns of people’s mov-
124ing, respiration presents a regular and rhythmic pattern.
125This inspires us to transform the real respiration cycle into a
126matched filter to extract the desired respiration signal
127mixed with the multipath signals. After filtering, there will
128be repetitive peaks in the matched filter output which match
129the corresponding respiration cycles. By detecting the
130peaks, we can estimate the respiration rate.
131Note that the performance of the matched filter depends
132on the shape of the real respiration cycle. However, respira-
133tion patterns are diverse for different persons and may
134change along with time. To obtain optimal performance of
135the matched filter, we first propose a cycle-averaging
136method to obtain the respiration cycle template for each
137user. Then, we design a respiration template update method
138to automatically adapt to the change of respiration pattern.
139In sum, our work makes the following contributions:

140� To the best of our knowledge, RM-Dynamic is the
141first work to study the problem of RFID-based RM in
142dynamic environments. We can accurately estimate
143the respiration state when people move in the vicin-
144ity of the monitored person.
145� We perform a detailed analysis on how the multi-
146path signals from surrounding people’s movements
147affect the respiration signal. We investigate the key
148factors that affect the pattern of multipath signals,
149which facilitates the understanding of the RFID mul-
150tipath effect in this field.
151� Based on the intrinsic features of respiration pattern,
152we analyze the signal’s spectrogram for accurate
153apnea detection and design a matched filter for accu-
154rate respiration rate estimation. Experimental results
155show that our system achieves similar performance
156on apnea detection (4.2% error) and respiration rate
157estimation (0:51 bpm error) in dynamic environ-
158ments compared with those in static environments.

1592 RFID-BASED RESPIRATION MONITORING AND

160THE MULTIPATH EFFECT

161In this section, we introduce how the RFID signal phase is
162affected by both the respiration activity and the multipath
163signals incurred by surrounding people’s movements.

1642.1 Phase of the Respiration Signal

165To interrogate an RFID tag, the RFID reader first sends out a
166continuous wave (CW) to activate the tag. After being pow-
167ered up, the tag modulates its information on the CW and
168reflects it back to the reader. The commodity RFID reader
169can then extract and output the low-level data of the RFID
170signal. In our work, we use the RFID signal phase to mea-
171sure the respiration state, since the signal phase is more sen-
172sitive to the minute chest movement during breathing [12].
173To thoroughly understand the RFID signal phase, we
174interpret it from the aspects of both signal voltage and sig-
175nal traveling distance. First, we refer to the phasor space, as
176shown in Fig. 2a, to show how the signal phase is measured

Fig. 1. Respiration monitoring in the static and dynamic environments.
The signal in the dynamic environment suffers from many noises com-
pared with that in the static environment.
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177 from the signal voltage. When the RFID reader receives the
178 tag backscattered signal, it is converted into the baseband
179 signal ~V , which can be represented as follows [21]:

~V ¼ ~Vo þ ~V i
t ;

~Vo ¼ ~Vleak þ ~Vscatter: (1)
181181

182 ~Vo is decided by the reader transmitter to receiver leakage
183 ~Vleak and scattering ~Vscatter from the environment. ~V i

t is the
184 voltage of the tag backscattered signal. ~V i

t changes with the
185 state of the tag chip (i = state 0 or 1). State 1 and state 0 refer
186 to the matching and mismatching states between the input
187 impedance of the tag antenna and the tag chip [22], respec-
188 tively. After removing the DC component in ~V , the signal
189 phase f is calculated as follows.

f ¼ angð~V 1
t � ~V 0

t Þ ¼ arctan
Qac

Iac

� �
; (2)

191191

192 where Qac and Iac refer to the AC quadrature and in-phase
193 components, respectively. When the tag moves along with
194 the chest movement while breathing, ~V i

t will rotate back
195 and forth, resulting in a periodic change of the signal phase.
196 Second, the signal phase can also be expressed as a func-
197 tion of the signal traveling distance d as follows.

f ¼ 2p � d
�

� �
mod 2p; (3)

199199

200 where � is the signal wavelength. During respiration, with
201 the RFID tag attached on the chest and facing to the antenna
202 directly, Equ. (3) becomes

f ¼ 2p � 2½d0 þ drðtÞ�
�

� �
mod 2p; (4)

204204

205 where d0 is the initial distance between the tag and the
206 antenna. drðtÞ is a sinusoidal function which describes the
207 chest movement. As the chest moves forward and backward
208 periodically, the signal phase exhibits a periodic pattern
209 accordingly with valleys and peaks indicating the expan-
210 sion and contraction of the chest, respectively.

211 2.2 Phase of Multipath Signals

212 In RFID-based RM systems, the LOS signal between the tag
213 and antenna is used for extracting the respiration pattern
214 [9], [12], [13], [14]. While, in practice, many reflectors in the
215 environment, e.g., surrounding people and furniture, could
216 bring multipath signals. As shown in Fig. 3, the static object
217 and moving person bring different multiple signals. Such
218 multipath signals can be superimposed with the LOS signal
219 at the receiver, which greatly affects the signal phase.

220When surrounding people move nearby the tag, the mul-
221tipath signals’ voltage is added on the received signal, and
222the tag signal phase f can be expressed as

f ¼ ang
XS
s¼1

ð~V 1
ts
� ~V 0

ts
Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
~VS

þ
XM
m¼1

ð~V 1
tm

� ~V 0
tm
Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
~VM

2
66664

3
77775; (5)

224224

225where ~V 1;0
ts

is the voltage of static components, including the
226static LOS signal and static multipath signals. ~V 1;0

tm
refers to

227the voltage of dynamic multipath signals. S and M are the
228total numbers of static signals and dynamic multipath sig-
229nals in the environment, respectively.
230In the phasor space, suppose the tag is attached on a
231static object, ~OA in Fig. 4 represents the sum of static com-
232ponents, i.e., ~VS in Equ. (5). When people move around the
233tag, the dynamic component ~VM , i.e., ~AB in Fig. 4, will rotate
234from 0 to 2p. The measured phase is denoted by the com-
235bined component ~OB. In consequence, the combined phase
236is jointly affected by j~VM j and ff~VM (the angle between ~VM

237and I-axis). When people move nearby the tag, the strength
238(length) of j~VM j varies, e.g., j~VM j increases from ~AB to ~AB0.
239Meanwhile, ff~VM may also change accordingly, e.g., ff~VM

240decreases when ~AB rotates to ~AC. Then the combined sig-
241nal phase will change accordingly. Therefore, in the follow-
242ing sections, we will study how surrounding people’s
243movements affect the signal phase from the views of j~VM j
244and ff~VM .

2452.2.1 Effect of j~VM j
246By investigating the effect of surrounding people’s move-
247ments on j~VM j, we can compare the magnitude of phase
248changes incurred by respiration with those from people’s
249moving. To achieve this, we look into the propagation paths
250of multipath signals. As shown in Fig. 3, multipath signals
251primarily propagate in two ways [18]: (1) antenna ! person
252! tag! antenna; (2) antenna! tag! person! antenna.
253In propagation way (1), the moving person affects the
254downlink of multipath signals, i.e., [antenna ! person !

Fig. 2. Demodulated voltage of the tag signal received by RFID reader.

Fig. 3. Propagation path of multipath signals from moving person.

Fig. 4. Effect of dynamic multipath signals on the signal phase.
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255 tag]. At this point, j~VM j mainly depends on the strength of
256 multipath signals which are dominated by the reflection of
257 the moving person from the antenna to tag. As a result, the
258 person’s moving area around the antenna is the key factor of
259 j~VM j. The RFID antenna is usually directional and has an effec-
260 tive radiation area, inside which a 3 dB beamwidth area
261 (denoted as 3 dB-area) exits. Fig. 5a shows a 3 dB-area for the
262 Laird antenna [23]. The area inside the red circle is the effec-
263 tive radiation range, and the inner area segmented by the two
264 black arrows is the 3 dB-area. When the person moves inside
265 the 3 dB-area,moremultipath signals are reflected by the per-
266 sonwith a stronger signalmagnitude, and vice versa.
267 To see the effect of people’s moving area around the
268 antenna on the signal phase, we attach an RFID tag on a sta-
269 tionary box and place the antenna 1:5 m away facing to the
270 tag straightly, as shown in Fig. 5b. A red line is drawn on
271 the ground as the 3 dB beamwidth boundary. Volunteers
272 are asked to walk insides, outside, and randomly in and out
273 of the 3dB-area without blocking the LOS path, as shown in
274 Fig. 6a. Since volunteers move closer to the antenna, differ-
275 ent moving distances to the tag, i.e., the effect from the
276 uplink signal, introduce limited impact to the signal phase
277 and can be ignored.
278 To compare the phase changes caused by the respiration
279 activity and those brought by the surrounding movements
280 in different areas, we employ the standard deviation (std) of
281 the signal phase, which can serve as a good indicator to
282 measure the variations in the signal. The larger the std is,
283 the larger phase changes are incurred by the movement.
284 The distributions of the std of the signal phase for people
285 moving inside, outside, and randomly in and out of the
286 3 dB-area are shown in Fig. 7. We also depict the std of the
287 signal phase merely caused by the respiration activity.
288 From Fig. 7, we obtain the following observations: (1) The
289 std of the signal phase when people move inside 3 dB-area
290 is generally larger than that of outside the 3 dB-area. This is
291 because the movements inside the 3 dB-area can result in a
292 larger j~VM j. (2) The std distributions of the random moving
293 and respiration overlap each other, showing that the multi-
294 path signals of moving people have similar effects on the
295 phase changes compared with the respiration activity.
296 Therefore, surrounding people’s movements could bring
297 comparable phase changes as the respiration activity.

298For propagation way (2), the moving person mainly
299affects the uplink of multipath signals, i.e., [tag ! person !
300antenna]. In this case, j~VM j is mainly decided by the strength
301of multipath signals which are dominated by the reflection
302of the moving person from the tag to antenna. Therefore, the
303distance between the moving person and tag becomes the
304key factor for the phase changes. To observe this effect, we
305ask a volunteer to walk along a straight line nearby the tag
306with different distances l to the LOS line, as shown in Fig. 6b.
307Since the volunteer mainly moves around the tag and is rela-
308tively far from the antenna, different moving areas towards
309the antenna, i.e., the effect from the downlink signal, cause
310little effect on the signal phase and can be neglected. The
311average std of the signal phase for different l is given in
312Fig. 8. The std first falls sharply and then decreases smoothly
313along with the increase of l. Thus, the effect of multipath sig-
314nals when the moving person is far from the monitored per-
315son is limited. However, if the person moves close to the
316monitored person, multipath signals could affect the respira-
317tion pattern and should be carefully removed.

3182.2.2 Effect of ff~VM

319The effect of ff~VM can be revealed from the moving pattern
320of surrounding people. We analyze the people’s moving
321pattern from two aspects. First, the torso movement can
322result in two possible changes of ff~VM , i.e., rotating clock-
323wise and counterclockwise, which causes the increase and
324decrease of ff~VM . Second, people’s limbs could swing peri-
325odically during walking, which could lead to a rhythmic
326change of ff~VM whose frequency is similar to the limb swing
327frequency within the range of 1:5� 2:5 Hz [24]. Thus, peo-
328ple’s moving also brings relatively high-frequency compo-
329nents in the signal phase compared with the human
330respiration frequency range of 0:17� 0:55 Hz [25].
331To show the effect of surrounding people’s torso and
332limb movements, we fix the tag on a stationary box and ask
333a person to walk from the antenna towards the tag, then
334stop for a while, and finally walk backward. The measured
335signal phase is depicted in Fig. 9. The general increasing
336and decreasing trend (highlighted by yellow dashed
337arrows) are mainly caused by the torso moving from the

Fig. 5. Illustration of RFID antenna radiation range and 3 dB beamwith.

Fig. 6. Moving area and trajectory of the surrounding person.

Fig. 7. Distribution of standard deviation of the signal phase with moving
people moving in different areas.

Fig. 8. Standard deviation of signal phase for different distances l.
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338 antenna to the tag side. Meanwhile, the small peaks in the
339 green rectangular are due to the periodic limb movements
340 during walking. The effect from the high-frequency limb
341 movements can be removed by a low pass filter. However,
342 the general increasing and decreasing trend in Fig. 9 may be
343 mis-detected as fake respiration cycles, which should be
344 eliminated from the signal phase.
345 In sum, based on the analysis of j~VM j and ff~VM , the multi-
346 path signals of moving people could distort the respiration
347 signal with comparable magnitude changes of the signal
348 phase, which include both high-frequency noises and fake
349 respiration cycles.

350 2.3 Respiration Signal Mixed With Multipath Signals

351 To investigate the impact of multipath signals on the respira-
352 tion signal, we attach an RFID tag on a person’s chest and
353 ask another two persons to walk nearby. The received signal
354 phase which is mixedwith respiration andmultipath signals
355 is shown in Fig. 10a. The ground truth signal of respiration is
356 collected with a chest band and shown in Fig. 10b. The moni-
357 tored person is asked to breathe normally for 5 respiration
358 cycles. In Fig. 10a, the respiration cycles are messed up with
359 noises caused by multipath signals. In particular, the noises
360 in the green rectangular exhibit similar magnitude as the real
361 respiration peaks. If a low pass filter is applied on Fig. 10a
362 followed by a peak detection scheme, as shown in Fig. 10c, 7
363 respiration cycles will be detected, and the extra 2 fake respi-
364 ration cycles could lead to inaccurate respiration rate estima-
365 tion. Besides, multipath signals would cause wrong apnea
366 detection. If people aremoving around themonitored person
367 with the apnea syndrome, multipath signals will incur a sim-
368 ilar pattern as respiration, which could misguide that the
369 monitored person is still breathing.

3703 OUR APPROACH

371In this section, we first give an overview of the RM-
372Dynamic system. Then, we introduce our proposed meth-
373ods for eliminating the effect of the multipath signals in
374dynamic environments for accurate apnea detection and
375respiration rate estimation.

3763.1 Overview

377The overview of the RM-Dynamic system is depicted in
378Fig. 11. The raw signal phase is first collected from the tag on
379the monitored person’s chest and segmented into fix-length
380windows. Next, status detection is performed to detect
381whether the monitored person is quasi-static, having small-
382scale limb movement, or with large-scale torso movement.
383RM is carried out when large-scale torso movements are not
384detected. Then, we transform the signal phase into the spec-
385trogram to detect the abnormal pattern of the apnea in the
386frequency domain. If no apnea is detected, the matched filter
387is applied on the signal phase to denoise the respiration sig-
388nal mixed with multipath signals. The matched filter is cre-
389ated using the respiration cycle template generated from our
390template extraction method. Since different people have var-
391ious respiration patterns, we pre-collect the signal phase
392when the monitored person breathes in a static environment
393to extract a unique template. Besides, we propose a template
394update method to adapt to the change of the monitored per-
395son’s respiration pattern alongwith time. Finally, the filtered
396signal phase will be processed to estimate the respiration
397rate by detecting the repetitive peaks.

3983.2 Status Detection

399Human movement status may significantly impact the RM
400result. Thus, before performing RM, we first detect the
401movement status of the monitored person. In our study, we
402classify the common moving status into three categories,
403including the quasi-static status (the person only breathes
404without other movements), limb-moving status (the person
405has small-scale limb movements), and torso-moving status
406(the person has large-scale torso movements), as shown in
407Fig. 12.

Fig. 9. Phase of multipath signals caused by a person walking by.

Fig. 10. Multipath mixed respiration signal, ground truth respiration sig-
nal, and peak detection result.

Fig. 11. Overview of the RM-Dynamic system.

Fig. 12. Three status of the monitored person.
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408 To detect different moving status, we observe the signal
409 phase when a monitored person breathes under the above
410 three status, as shown in Fig. 13. For the quasi-static status,
411 the respiration signal shows a clear periodic pattern. For the
412 limb-moving status, the limb movement causes small jitters
413 in the respiration signal, as the green rectangular depicted
414 in Fig. 13b. These jitters, however, have a limited impact on
415 the respiration signal and can be removed using our
416 designed matched filter. When the monitored person moves
417 the entire torso, the signal phase exhibits more dramatic
418 fluctuations, as highlighted by the red rectangular in
419 Fig. 13c. This is because the human torso may block the LOS
420 path between the tag on the chest and the antenna. Based
421 on these observations, our RM-Dynamic system should
422 automatically detect the movement status and perform RM
423 when the person is in the quasi-static and limb movement
424 status, while stopping RM when large torso movements are
425 detected.1

426 To detect the torso-moving status, we compare the mag-
427 nitude of the phase changes within a window, which is cal-
428 culated as the difference fdiff between the maximum and
429 minimum phase. If fdiff is larger than a pre-defined thresh-
430 old, the window is regarded as the one under torso-moving
431 status, and vice versa. To obtain the threshold, we first cal-
432 culate a theoretical value for the maximum phase change
433 frm of the respiration signal. The displacement of chest dur-
434 ing respiration ranges from 4� 12 mm [26]. For the RFID
435 signal with the 925 MHz carrier frequency, frm is calculated
436 as ð2drm=�Þ � 2p ¼ 0:465 rad, where drm is set to 12 mm.
437 Then, we obtain the empirical standard deviation frstd

of all
438 the frm calculated from the measured respiration signal.
439 Finally, the threshold is determined as the sum of the theo-
440 retical frm and empirical frstd

.

441 3.3 Apnea Detection

442 After status detection, the next step is to detect whether the
443 apnea appears. Recall that multipath signals from moving
444 people could result in fake respiration cycles, which can
445 lead to mis-detection of apnea. For example, the signal
446 phase shown in Fig. 14a is collected from a person who
447 stops breathing from 15 - 24 s with people moving around.
448 The multipath signals result in a respiration-like peak from

44915–20 s in the signal phase after the low-pass filter, as
450shown in the red rectangular of Fig. 14b. Then, the person
451would be mis-detected as breathing normally after applying
452the peak detection scheme on the filtered phase.
453To differentiate the apnea from multipath signals, we
454employ the time-frequency pattern of the signal phase. In
455specific, we extract the spectrogram of the signal phase,
456from which we can identify the anomaly in the respiration
457signal with apnea. For instance, the spectrogram of the sig-
458nal phase in Fig. 14a is extracted and shown in Fig. 14c. The
459signal spectrogram exhibits a white area in the middle
460which exactly matches the apnea period, meanwhile clearly
461showing the dominant frequencies during normal breathing
462at around 0:3� 0:4 Hz, which corresponds to the respira-
463tion frequency. This indicates that the frequency compo-
464nents of the real respiration signal, although mixed with the
465multipath signals, still dominant over the respiration fre-
466quency range of 0:17� 0:5 Hz [25]. In contrast, if the person
467stops breathing, and only multipath signals are left, the fre-
468quency components almost disappear within the respiration
469frequency range.
470Based on this observation, we leverage the disappearance
471of the dominant frequencies within the respiration fre-
472quency range to detect the apnea. We define a respiration-
473dominance index (RDI) to detect whether the dominant fre-
474quency disappears within the respiration frequency range.
475To measure RDI, we first perform the short-time fourier
476transformation (STFT) on the signal phase to obtain the
477spectrogram. In STFT, the signal phase is first divided into
478fixed-length segments.2 For each time segment, we measure
479the mean of all the frequency-domain amplitudes in the
480spectrogram as a noise threshold. Then, the RDI is calcu-
481lated by counting the number of frequencies, whose ampli-
482tude exceeds the noise threshold within the respiration
483frequency range. RDI characterizes the dominance of the

Fig. 13. Signal phase for respiration under different movement status.

Fig. 14. Raw phase, phase after matched filter, spectrogram, and RDIs
for the respiration signal with apnea.

1. We note that torso-moving status, e.g., posture change during
sleep, does not appear frequently. The monitor person is mostly in a
quasi-static status or with a few limb movements.

2. In our implementation of STFT, the length of the segment is set to
512 sampling points, and the size of FFT is 2,048 after zero-padding.
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484 respiration components over all the frequency components
485 in each segment of the signal phase. The RDI of multipath
486 signals during the apnea period is much lower than that of
487 the respiration cycles mixed with multipath signals. In
488 Fig. 14d, we show the RDIs for all the segments of the spec-
489 trogram in Fig. 14c. RDIs during the apnea period all
490 decrease to 0 while the RDIs for the respiration cycles all
491 exceed 10. To detect the decrease in RDIs for apnea detec-
492 tion, we calculate the mean RDI of the person’s pre-col-
493 lected respiration signal in the static environment, and half
494 of the mean RDI is set as the reference RDI. If the length of
495 consecutive RDIs whose values are lower than the reference
496 RDI exceeds 5 s, the apnea is detected, and the correspond-
497 ing phase window will not be used to perform respiration
498 rate estimation. The length of 5 s is chosen because it is the
499 longest duration of normal respiration cycles [25].

500 3.4 Matched Filter

501 After apnea detection, the signal phase without apnea is
502 used to estimate the respiration rate. Recall that the real res-
503 piration cycles are distorted by high-frequency noises and
504 fake respiration cycles, which cannot be simply eliminated
505 by the low-pass filter. To tackle this issue, we leverage the
506 difference between the respiration pattern and multipath
507 signals. In specific, due to the intrinsic features of the
508 human respiration pattern, the respiration signal phase
509 shows a periodic and sinusoidal pattern. In contrast, multi-
510 path signals are random and irregular, which involve both
511 low and high-frequency noises combined in various ways.
512 This inspires us to employ the matched filter to detect the
513 target signal out of noises. The matched filter is an optimal
514 linear filter, created from a target signal template, to detect
515 the target signal by maximizing its signal-to-noise ratio
516 (SNR) from the unknown signal mixed with noises [27]. For
517 RM, we extract a single respiration cycle as the template for
518 creating the matched filter and apply the matched filter on
519 the received signal phase to denoise it. The output of the
520 matched filter will peak at where the target signal appears.
521 Finally, we can detect the peaks in the filtered phase and
522 estimate the respiration rate.

523 3.4.1 Template Extraction

524 To design the matched filter, the respiration cycle template
525 should be carefully selected due to the following reasons.
526 First, the shape of the template can affect the performance
527 of the matched filter. Only when the template has the same
528 shape as the target signal can we achieve the optimal SNR.
529 If the shape of the template is not consistent, the SNR of the
530 matched filter output will vary accordingly. Second, respi-
531 ration patterns are unique and diverse among different peo-
532 ple [20]. For example, the signal phase of two persons’

533

534

535

536

537

538

539

540

541

542

543

544545respiration in Fig. 15 shows that their respiration cycles
546have different shapes. This means that the respiration cycle
547template should be typical for each monitored person to
548achieve higher SNR of the filtered phase. We will discuss
549the effect of using the person’s own template and other per-
550sons’ templates on the SNR in Section 4.
551To extract the respiration cycle template, we first pre-col-
552lect the signal phase of pure respiration for the monitored
553person in a static environment. The monitored person nor-
554mally breathes for 1�2 minutes during which the signal
555phase is collected. Noth that the template collection is a
556one-time step, which would not bring too much inconve-
557nience to users. Then, we extract the template from the pure
558respiration signal by using a cycle-averaging method intro-
559duced as follows. First, we smooth the respiration signal
560phase with a median filter. Then, we detect the local mini-
561mums, which are the starting points of respiration cycles, to
562segment the signal phase into individual cycles. To detect
563the local minimums, peak detection is performed on the
564negative of the signal phase. Next, for each respiration cycle,
565we calculate its similarity with all the other respiration
566cycles using the euclidean distance. The respiration cycle
567with the highest similarity is selected as the template candi-
568date. Finally, the template candidate is scaled according to
569the average width and height of all the respiration cycles as
570the respiration cycle template rtðnÞ.

5713.4.2 Template Update

572In practice, people’s respiration patterns may change along
573with time. Respiration rate can increase or decrease under
574different scenarios. For instance, the respiration rate could
575increase after doing exercise. Furthermore, many diseases,
576e.g., tachypnea and bradypnea, are related to the increasing
577and decreasing of respiration rate. As such, the template for
578the matched filter should be timely updated to adapt to the
579change of respiration pattern.
580herefore, we propose a template update method during
581RM. We first set a period for updating the template, e.g.,
5823 min, considering that the respiration pattern is highly
583possible to remain stable in a short period. Then, for each
584update period, a certain time window of the signal phase,
585which is only affected by the respiration activity without
586the interference from multipath signals, is applied to update
587the template. To achieve this, we leverage the difference of
588the phase distributions between the pure respiration signal
589and the respiration signal mixed with the multipath signals.
590The pure respiration signal is a sinusoidal wave, which has
591a non-gaussian distribution, as shown in Fig. 16a. While,

Fig. 15. Phase values of two persons’ respiration activity.

Fig. 16. Distributions of the signal phase for (a) the pure respiration sig-
nal and (b) respiration signal mixed with the multipath signals.
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592 due to the random noises incurred by the multipath signals,
593 the distribution of the multipath-mixed respiration signal is
594 more likely to be gaussian, as depicted in Fig. 16b. Based on
595 these observations, we calculate the distance between the
596 phase distribution and a comparison gaussian distribution.
597 The earth mover’s distance (EMD) is employed to measure
598 the distribution distance. A smaller EMD indicates a larger
599 similarity. The mean and standard deviation of the compari-
600 son gaussian distribution are set to be those obtained from
601 the measured signal phase. We collect 40 traces of phase for
602 the monitored person breathing normally in a static envi-
603 ronment and with people moving nearby, respectively.
604 Their EMD results with the corresponding gaussian distri-
605 bution are shown in Fig. 17. For the pure respiration signal,
606 the distance is much larger than that of the multipath-mixed
607 respiration signal. Hence, we select the phase window
608 whose EMD is the largest among all the windows so that it
609 mainly involves the pure respiration signal. Then, the cycle-
610 averaging method is applied on the selected window to
611 update the template rtðnÞ.

612 3.4.3 Matched Filter Creation

613 With the extracted template rtðnÞ, the impulse response of
614 the matched filter hðkÞ is obtained as hðkÞ ¼ rtðN � k� 1Þ,
615 where N is the length of rtðnÞ. In Fig. 18, we show the out-
616 put signal phase after applying the matched filter on the
617 raw signal phase in the upper figures of Figs. 18a and 18b,
618 respectively. In the first figure of Fig. 18a, the multipath sig-
619 nals from surrounding movements bring fake respiration
620 cycles in the raw signal phase. When using the low-pass fil-
621 ter, these fake cycles still remain in the signal phase. In con-
622 trast, applying the matched filter can remove the fake cycles
623 meanwhile accurately detecting the real cycles, which
624 match the ground truth in Fig. 10b. Similarly, by applying
625 the matched filter, the fake respiration peak caused by the
626 limb movement in Fig. 18b, is successfully removed, which,
627 however, cannot be fulfilled by the low-pass filter.

628 3.5 Respiration Rate Estimation

629 Intuitively, we can apply fast fourier transformation (FFT)
630 to measure the respiration rate. However, the resolution of
631 FFT is restricted by the length of the time window [12]. For
632 instance, if respiration rate is measured every 20 s, the reso-
633 lution in the frequency domain is 0:05 Hz, which results in
634 3 bpm resolution in the time domain. Thus, to accurately
635 estimate the respiration rate, we use peak detection to avoid
636 the low-resolution problem of FFT.
637 The peak detection method estimates the respiration rate
638 based on the detected peaks, which is suitable for real-time
639 respiration monitoring. However, the peak detection
640 approach could suffer from tiny fluctuations, which can be

641misdetected as peaks, in the filtered phase. Previous meth-
642ods set thresholds to discard the wrong peaks which are too
643low or too closed to each other [7]. However, in the RM sce-
644nario, the magnitude of the signal phase will change along
645with time. A fixed threshold may be improper and could
646incur missing or wrong peaks. Therefore, to adapt to differ-
647ent scales automatically, we employ the automatic multi-
648scale peak detection (AMPD) [28] algorithm. AMPD frees
649us from choosing fixed thresholds to detect the real peaks
650with the help of the multi-scale technique. The detected
651peaks of the signals in Fig. 18 after applying AMPD are
652shown with red crosses. Then, the respiration rate is esti-
653mated as follows.

rate ¼ 60=
1

n

Xn�1

i

ðpiþ1 � piÞ; (6)

655655

656where pi is the timestamp of the detected peak, and n is the
657total number of peaks. The calculated respiration rate is in
658the unit of breath per minute (bpm).

6594 EVALUATION

660In this section, we introduce the experimental setup, evalua-
661tion metrics, and experimental results in terms of different
662factors for apnea detection and respiration rate estimation.

6634.1 Experimental Setup

664We implemented the RM-Dynamic system using commer-
665cial off-the-shelf RFID devices. The ImpinJ Speedway R420
666reader is connected with a Laird E9208 antenna to transmit
667the RFID signal and interrogate the RFID tag. The reader

Fig. 17. EMD between the gaussian distribution and the distributions of
the pure respiration signal and multipath-mixed respiration signal.

Fig. 18. Raw and filtered phase mixed with the multipath signals from (a)
the ambient movement of surrounding people and (b) the limb move-
ment of the monitored person.
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668 works in the 920�925 MHz frequency band, and the reader
669 mode is set to MaxThroughput. The reader is connected to a
670 Dell Inspiron 7460 laptop with i7-7500U CPU and 8 GB
671 RAM. The RFID signal phase is processed using Python 3.0.
672 We conducted experiments in three different environ-
673 ments with different layouts, as shown in Fig. 19. The
674 antenna is placed 1�2 m away from the monitored person.
675 The tag is attached on the person’s chest. We invite 12 vol-
676 unteers, including 3 females (height: 165�170 cm, chest
677 width: 27�32 cm) and 9 males (height: 172�180 cm, chest
678 width: 33�40 cm), to act as the monitored person and sur-
679 rounding people in turn. We do not assign specific routes
680 for volunteers to move so that they can walk freely nearby
681 the monitored person. We ask the monitored person to nor-
682 mally breathe for 2 min to extract the respiration template.
683 Then, the signal phase is segmented into 20 s-windows to
684 estimate the respiration state. The ground truth of the respi-
685 ration signals is collected via a chest band equipped with a
686 3-axis accelerometer.

687 4.2 Evaluation Metrics

688 We use the following metrics to evaluate the performance of
689 our system. First, for apnea detection, the percentage of the
690 missing apnea (MA) and false apnea (FA) over all the apnea
691 cases are defined as below.

MA ¼ #missing apnea
#real apnea ; FA ¼ #false apnea

#no apnea : (7)693693

694

695 Second, to evaluate the accuracy of respiration rate esti-
696 mation, we use the mean absolute error (MAE) as below.

MAE ¼ 1

n

Xn
i¼1

jri � r
0
ij; (8)

698698

699 where ri and r
0
i are the estimated and real respiration rate,

700 respectively. n is the number of time windows.

701 4.3 Evaluation Results

702 In this section, we show the experimental results on apnea
703 detection and respiration rate estimation.

704 4.3.1 Performance of Status Detection

705 First, we evaluate the accuracy of our method for status
706 detection, which aims to differentiate the large-scale torso
707 movement from the quasi-static and small-scale limb move-
708 ment of the monitored person. The respiration state estima-
709 tion, including apnea detection and respiration rate
710 estimation, is performed when the monitored person is in
711 the quasi-static status or with small-scale limb movement.
712 In this evaluation, we ask all the volunteers to breathe nor-
713 mally in the quasi-static status, breathe with little limb

714movement (e.g., shake the hand), breathe with torso move-
715ment (e.g., turn around the body), and collect the corre-
716sponding signal phase, respectively. The status detection
717results are shown in Table 1. The accuracy of detecting the
718quasi-static & limb-moving status and the torso-moving sta-
719tus both exceed 95%. Such a status detection result guaran-
720tees that RM can be accurately performed.

7214.3.2 Effect of RDI for Apnea Detection

722In this evaluation, we compare the performance of our RDI-
723based approach with the existing peak-threshold approach
724[9] to demonstrate the effectiveness of our approach on apnea
725detection in dynamic environments. The previous approach
726sets a fixed threshold for detecting peaks in the respiration sig-
727nal. If there is no peak for a certain time, the apnea is detected.
728We set the same threshold in [9], which is the median of the
729signal phase in a time window, and compare its result with
730our RDI-based method. Table 2 shows that our approach out-
731performs the peak-threshold approach with an approximate
73210% reduction of MA and FA. This is because the fake peaks
733caused by the multipath signals from moving people are
734wrongly regarded as breathing cycles in the peak-threshold
735approach. However, our proposed RDI-based approach can
736accurately differentiate the real respiration signal from the
737multipath signals during the apnea period.

7384.3.3 Effect of Matched Filter for Respiration Rate

739Estimation

740To show the effectiveness of the matched filter on respira-
741tion rate estimation, we first compare the MAE between the
742real and estimated respiration rates with and without
743applying the matched filter on the signal phase. For meth-
744ods without the matched filter, we use the low-pass filter
745and median filter to denoise the signal phase. Then, AMPD
746is applied to count the respiration cycles. As shown in
747Fig. 20a, the average MAE using the matched filter is
7480:51 bpm. While the MAEs using the low-pass and median
749filters are 2:94 bpm and 3:08 bpm, respectively, which are 5
750times larger than that of using the matched filter. This indi-
751cates that the matched filter can help to promote the accu-
752racy of respiration rate estimation.
753Next, we investigate the effectiveness of the template
754extraction and update methods with two experiments. The
755first experiment is to show how different persons’ templates

Fig. 19. Experimental settings in different environments.

TABLE 1
Accuracy of Status Detection

quasi-static & limb-moving torso-moving

Accuracy 95:7% 97:1%

TABLE 2
Comparison of RDI-Based and Peak-Threshold Based Methods

for Apnea Detection

RDI (our method) peak-threshold

MA 3:75% 12:65%

FA 4:15% 15:8%
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756 could affect the RM performance. We select one volunteer
757 (X) and extract the template from X’s respiration signal
758 phase in a static environment. Then, X’s template is used to
759 create a matched filter to denoise the respiration signal
760 phase when people move around X. Then, we extract
761 another three templates from three volunteers (A, B, and C)
762 and create three matched filters, respectively. Finally, we
763 apply the three matched filters to denoise X’s respiration
764 signal phase. The MAEs of using the matched filters created
765 from different persons’ templates are shown in Fig. 20b. In
766 addition to the MAE, SNR is also reported to show the abil-
767 ity of the matched filter for denoising the signal. The SNR
768 when using the matched filter created from X’s own tem-
769 plate is higher than using other persons’ templates. Mean-
770 while, using X’s own template also achieves the lowest
771 MAE, indicating the importance of extracting the personal-
772 ized template for each user and the effectiveness of our tem-
773 plate extraction method.
774 The second experiment is to show the performance of the
775 template update method when the monitored person
776 changes the respiration pattern. We let X breathe normally
777 for 5 min with other people moving nearby and collect the
778 respiration signal phase. Then, X is asked to do pedaling
779 for 15 min. After pedaling, the respiration rate of X greatly
780 increases, and we continue to collect X’s signal phase for
781 10 min. Then, we estimate the respiration rate before and
782 after pedaling using a fixed template and the updated tem-
783 plates of X, respectively. The template update period is set
784 as 2 min. The MAE of using the update templates is
785 0:11 bpm lower than the fixed template, showing the effec-
786 tiveness of the template update method.

787 4.3.4 Effect of the Number of Moving People on Apnea

788 Detection and Respiration Rate Estimation

789 In this evaluation, we evaluate the system performance in
790 both static and dynamic environments with different

791numbers of moving people, i.e., 0 (static), 1 (1p), 2 (2p), and
7923 (3p) persons moving around. The distance between the
793person and antenna is set as 1:5 m. First, we evaluate the
794apnea detection performance. Volunteers who act as the
795monitored person are asked to simulate the apnea by hold-
796ing their breath for 5�10 s. The results of MA and FA are
797shown in Fig. 21a. Generally, MA and FA grow slightly
798with the increasing number of moving people, while they
799are both below 6% for all cases. The average MA and FA
800with 1-3 moving persons are only 2-3% higher than those in
801the static environment. This indicates that our approach can
802enhance the robustness of apnea detection in dynamic envi-
803ronments with multiple surrounding persons.
804We further show the MAE of respiration rate estimation
805for different numbers of moving people in Fig. 21b. The
806average MAE raises from 0:2 bpm to 0:6 bpm with more
807number of moving people. This is mainly because more
808moving people could result in more multipath signals. We
809also compare the accuracy of respiration rate estimation of
810our system with existing systems in Table 3. Our system has
811a similar range of MAE compared with existing works. Fur-
812thermore, [12], [14] are only designed for RM in static envi-
813ronments, while our system can also work in dynamic
814environments.

8154.3.5 Effect of the Moving Area of Surrounding People

816on Apnea Detection and Respiration Rate

817Estimation

818As mentioned in Section 2.2.1, the moving area could affect
819the signal phase. Hence, we ask a volunteer to move inside,
820outside, and randomly inside or outside the 3 dB-area to
821test the system performance, respectively. First, we show
822the results of apnea detection in different areas in Fig. 22a.
823MA and FA when the ambient person moves outside the
8243 dB-area are around 4%, which are smaller than the MA
825and FA of moving inside the 3 dB-area. For randomly mov-
826ing in and out of the 3 dB-area, MA and FA are slightly
827larger than that of moving outside the 3 dB-area.
828The MAEs for respiration rate estimation of different
829moving areas are shown in Fig. 22b. When the person

Fig. 20. Effect of matched filter: (a) MAE for respiration rate estimation
with matched filter, low-pass filter, and median filter (b) SNR and MAE of
using different respiration templates to make matched filter.

Fig. 21. Effect of the number of moving people on (a) apnea detection,
(b) respiration rate estimation.

TABLE 3
Comparison of Respiration Rate Estimation With Existing Work

[12] [14] our approach

MAE 0.5-1 bpm 0.3-0.5 bpm 0.3-0.6 bpm

Scenario static static dynamic

Fig. 22. Effect of the moving area of surrounding people for (a) apnea
detection, (b) respiration rate estimation.
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830 moves inside the 3 dB-area, the MAE is around 0:45 bpm,
831 which is 0:15 bpm higher than moving outside the
832 3 dB-area in average. The results show that we can still
833 achieve relatively high accuracy when the moving person is
834 inside the 3 dB-area of the antenna.

835 4.3.6 Effect of Distance Between Antenna and

836 Monitored Person on Apnea Detection and

837 Respiration Rate Estimation

838 In this evaluation, we investigate the effect of the distance
839 between the antenna (A) and the monitored person (P ) on
840 the system performance. A longer distance between A and
841 P means a longer traveling distance of the RFID signal,
842 resulting in a more attenuated backscattered signal. Besides,
843 the longer the distance between A and P , the larger the
844 3 dB-area is. As such, people may easily move into the
845 3 dB-area. In our experiment, we first change the A� P dis-
846 tance from 1 m to 4 m with an interval of 0:5 m to test how
847 the distance affects the accuracy of apnea detection. Then,
848 we ask one volunteer to move nearby the monitored person.
849 The results of apnea detection under different distances are
850 shown in Fig. 23a. Both the MA and FA increase along with
851 the increasing distance between A and P . MA and FA
852 slightly drop when the distance exceeds 2:5�3 m because
853 the power of the multipath signals reflected by the moving
854 person would decrease with a longer A� P distance. The
855 error difference of apnea detection with different A� P dis-
856 tances is around 1.5%.
857 The MAEs of respiration rate estimation for different dis-
858 tances are shown in Fig. 23b. The MAE gradually goes up
859 when the distance increases from 1 m to 3 m. This is
860 because the 3 dB-area becomes larger to allow the person to
861 move inside, and multipath signals bring a larger effect on
862 the signal phase. While, when the distance is larger than

8633 m, the MAE slightly drops because the multipath signals
864become weak with a longer traveling distance. Furthermore,
865a longer distance between A and P also leads to weaker res-
866piration LOS signals.

8674.3.7 Effect of Tag Orientation on Apnea Detection and

868Respiration Rate Estimation

869When being attached on the chest, the tag can be placed
870with different orientations. Different orientations of the tag
871could result in different initial signal phases of the backscat-
872tered signal [29], which affects the system performance. In
873our experiment, we choose 3 orientations, including 0�, 45�,
874and 90� of the tag to the gravity direction. The results for
875apnea detection with different orientations are given in
876Fig. 24a. The MA and FA under all tag orientations are
877lower than 5% for apnea detection, and the MAE of respira-
878tion rate estimation is only around 0:4 bpm as shown in
879Fig. 24b. This is because we make sure the LOS path exists
880throughout the experiment and we use the relative phase
881change to measure the chest displacement. In addition, we
882use a circularly polarized antenna which covers all tag ori-
883entations and can receive the consistent backscattered signal
884under different tag orientations.

8854.3.8 Effect of Different Postures

886In this experiment, we evaluate our method for apnea detec-
887tion and respiration rate monitoring for different sleeping
888postures. We mainly consider three common postures, i.e.,
889lying on the back, lying on the side, and lying on the stomach,
890as shown in Fig. 25. We ask one volunteer to lie under three
891different postures and ask another volunteer to walk nearby.
892The results are shown in Table 4. The accuracy of both apnea
893detection and respiration rate estimation for the posture of
894lying on the side is lower than those of lying on the back.
895This is because when the user lies on the side, the chest dis-
896placement brings a smaller change of the signal phase. When
897the user lies on the stomach, since the signal of the front tag
898is fully blocked by the body, the reader cannot receive the
899backscattered signal. However, we notice that the human

Fig. 23. Effect of the distance between the monitored person and
antenna for (a) apnea detection, (b) respiration rate estimation.

Fig. 24. Effect of the tag orientation for (a) apnea detection, (b) respira-
tion rate estimation.

Fig. 25. Three kinds of common sleeping postures, including (a) lie on
the back, (b) lie on the side, (c) lie on the stomach.

TABLE 4
Apnea Detection and Respiration Rate Estimation Results

Under Different Sleeping Postures

Posture Apnea Detection Respiration rate
estimation (MAE)MA FA

Lie on back 3:9% 4:5% 0.38 bpm
Lie on side 5:4% 5:8% 0.54 bpm

Lie on
stomach

front tag: / front tag: / front tag: /
back tag: 7:8% back tag: 8:6% back tag: 0.62 bpm
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900 back still expands and contracts slightly during respiration.
901 Thus, we attach another tag on the back for RM. As shown in
902 Table 4, the MA and FA of apnea detection are still below
903 10%, and the MAE for respiration rate is still below 0:7 bpm,
904 which reveals the validity of our proposed system.

905 4.3.9 Performance of Other Movements

906 Apart from the walking movement, other movements could
907 also appear around the monitored person in daily RM sce-
908 narios. In this experiment, we evaluate the system perfor-
909 mance for another four common movements. First, for the
910 couple in sleep, the movement of one person changing the
911 sleeping posture can bringmultipath signals to the other per-
912 son being monitored. Thus, we ask two volunteers to lie
913 down. One of them is the monitored person and another vol-
914 unteer act as the surrounding person who is around 30 cm
915 away from themonitored person and is allowed to randomly
916 change sleeping postures. Second, for a person sitting beside
917 the monitored person, the person’s movements like stretch-
918 ing arms or turning around also incur multipath signals to
919 the monitored person. Therefore, we ask one volunteer to sit
920 50 cm away from the monitored person and move his/her
921 arm and body. Third, in home environments, the house-
922 keeper may move nearby the monitored person. Finally, the
923 monitored person couldmove limbs during RM.We conduct
924 experiments under the above four scenarios to detect the
925 apnea andmeasure the respiration rate.
926 The results are shown in Fig. 26. The MA and FA of
927 apnea detection are all below 5% for different movements.
928 This is because our designed matched filter can remove the
929 effect of the surrounding person’s movement and small-
930 scale limb movement from the monitored person. The sit-
931 ting movements have the lowest MA and FA mainly
932 because they introduce a relatively smaller scale of move-
933 ments. Meanwhile, the sleeping posture changes and limb
934 movements have a relatively larger effect on apnea detec-
935 tion. This may due to the reason that these movements are
936 more close to the monitored person, i.e., inside the
937 3 dB-area, so that more significant multipath signals are
938 incurred. The MAE of respiration rate estimation shows
939 similar results, with the MAE of less than 0:5 bpm.

940 5 RELATED WORK

941 Our work is related to RF-based RM and the multipath
942 effect of RF signals. Therefore, in this section, we introduce

943existing works for RF-based RM and solutions in dealing
944with the multipath effect.

9455.1 RF-Based RM

946Existing works employ RF technologies, e.g., WiFi, Radar,
947and RFID, for RM since these technologies enable a conve-
948nient and non-intrusive method for RM. WiFi has been pop-
949ularly used for RM due to its low-cost and pervasive
950features [5], [6], [7], [9], [30], [31], [32]. The Fresnel zone
951model is introduced to explain the principle and theory of
952using the WiFi signal for RM [6]. This model jointly consid-
953ers the effect of the user’s location and the WiFi sensing
954range to achieve optimal RM performance. Based on this
955model, FarSense further employs the ratio of WiFi channel
956state information to greatly increases the sensing range of
957WiFi signal [30]. In addition to RM, heartbeat estimation
958can be achieved using the WiFi signal as well [7]. However,
959WiFi technology suffers from narrow bandwidth, which is
960difficult to realize simultaneous RM for multiple users.
961Although multi-user RM has been investigated using WiFi
962technology [9], [31], [33], they fail to match the respiration
963pattern to each person because the narrow bandwidth of
964WiFi cannot localize multiple users accurately. However,
965the mapping among the multiple users and respiration pat-
966terns is critical so that users can know which person has
967respiratory problems. To overcome this limitation, UWB
968and FMCW radar are employed to monitor the respiration
969since these devices can provide wider bandwidth [10], [11],
970[34]. However, such specialized devices are expensive and
971difficult for public use and large-scale deployment.
972In recent years, RFID is widely used for RM due to the
973lightweight and cost-effective RFID tags [12], [13], [14], [15],
974[17], [35], [36]. TagBreathe uses commodity RFID readers
975and enables multi-user RM by attaching RFID tags on multi-
976ple users and separately extracting the signal phase from
977each tag on the basis of the tag ID [12]. RFID signal can be
978used for RM under different applications, for instance, RM
979is realized when people are doing during exercise [15] and
980driving in a car [35]. Apart from RM, the RFID signal can
981detect respiration and heartbeat simultaneously [16]. How-
982ever, existing approaches either work in a static environ-
983ment or when the monitored person is moving, e.g.,
984walking or running. Our work differs from previous works
985that we implement RM in the dynamic environment, where
986other people could move nearby the monitored person. Our
987proposed RM-Dynamic system aims to fill this gap for
988RFID-based RM.

9895.2 Multipath Effect of RF Signals on RM

990The multipath effect is a propagation phenomenon for RF
991signals. This phenomenon is common in practice because
992there are many reflectors in our environment that can reflect
993RF signals [37]. Multipath signals reflected by non-target
994objects can bring noises for sensing the target object’s
995behavior. Different approaches have been proposed to deal
996with the multipath effect [38], [39], [40], [41]. WiTrack
997employs FMCW radar to extract the time of flight of each
998signal path, so that the LOS signal of the target person,
999which has the shortest path, can be separated from multi-
1000path signals [39]. RespiRadio revises the WiFi 802.11

Fig. 26. Effect of the other movements, including sleeping posture
changes, sitting movements, cleaning room, and limb movements of the
monitored person for (a) apnea detection, (b) respiration rate estimation.
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1001 protocol to widen the bandwidth of the WiFi signal and
1002 employs the channel impulse response to separate the
1003 target’s signal path from other multipath signals [38].
1004 Instead of using the expensive FMCW radar or modifying
1005 the WiFi protocol, we provide a lightweight approach to
1006 remove the multipath effect with RFID technology. In our
1007 work, based on our detailed investigation on how multipath
1008 signals affect the respiration signal, we effectively remove
1009 the noises caused by multipath signals for accurate RM
1010 without introducing extra hardware or any modification of
1011 the standard communication protocol.

1012 6 DISCUSSION

1013 In this section, we discuss some practical issues in using our
1014 system. First, for sleep apnea detection, the current system
1015 can only detect the central apnea, which is caused by a fail-
1016 ure of the brain to activate the muscles of breathing, so that
1017 there is no chest movement. But for the obstructive apnea,
1018 in which the chest muscle still moves but the airway is
1019 blocked, we cannot detect it. In fact, existing RF-based RM
1020 systems all fail to do so, because the principle of using RF
1021 signals for RM is to detect signal change incurred by the
1022 chest movement during breathing.
1023 Second, in the current system, we practically assume that
1024 surrounding people would mainly move in the vicinity of
1025 the monitored person without going across the LOS path
1026 between the monitored person and antenna. This means
1027 that RM-Dynamic is not designed to remove the effect from
1028 the surrounding people if they move to block the LOS path.
1029 While in practice, we can change the deployment of the
1030 RFID antenna to avoid other people blocking the LOS path.

1031 7 CONCLUSION

1032 In this work, we aim to achieve robust RFID-based RM in
1033 dynamic environments. Previous systems have realized RM
1034 in the static environment. While in dynamic environments,
1035 the moving people bring multipath signals which distort
1036 the respiration pattern in the RFID signal phase. Therefore,
1037 we propose to enhance the robustness of RFID-based RM in
1038 dynamic environments. To identify the apnea out of the
1039 multipath signals which could mimic the pattern of breath-
1040 ing cycles, we draw on the dominance of respiration compo-
1041 nents in the frequency domain to avoid the missing
1042 detection of apnea. For respiration rate estimation, the effect
1043 of the multipath signals is eliminated by employing the
1044 matched filter to detect the desired respiration cycles from
1045 the noisy signal phase. The respiration rate is then obtained
1046 by counting the peaks in the filtered phase. The evaluation
1047 results show that our approach can promote the accuracy of
1048 respiration monitoring in dynamic environments.
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