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Introduction

Human Activity Recognition necessity
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◆ Falls Are Serious and Costly

•Each year, 3 million older people are 

treated in emergency departments for 

fall injuries.

•Over 800,000 patients a year are 

hospitalized because of a fall injury.

•Falls are the most common cause of 

traumatic brain injuries (TBI).

Bergen G, Stevens MR, Burns ER. Falls and Fall Injuries Among Adults Aged ≥65 Years — United States, 2018. MMWR Morb Mortal Wkly Rep 2016; 

65:993–998. DOI: http://dx.doi.org/10.15585/mmwr.mm6537a2
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❖ 17.8% had one-time in-home falls

❖ Post fall medical outpatient was 41.5%

❖ 50% of the citizens do not deploy any preventive equipment at home



Privacy concern, LoS dependent

Introduction

Camera-based Activity Recognition
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[1] Fang, Biyi, Xiao Zeng, and Mi Zhang. "Nestdnn: Resource-aware multi-tenant on-device deep learning for continuous mobile vision." In ACM MobiCom, 2018.
[2] Xu, Mengwei, et al. "DeepCache: principled cache for mobile deep vision." Proceedings of the 24th Annual International Conference on Mobile Computing and 
Networking. ACM, 2018.



▪ Direct body contact

Wearable sensor-based Activity Recognition

Introduction01

▪ Inconvenience
▪ High cognitive load 6

[1] Han Ding, Longfei Shangguan, Zheng Yang, Jinsong Han, Zimu Zhou, Panlong Yang, Wei Xi, and Jizhong Zhao. Femo: A platform for free-weight exercise monitoring 
with rfids. In ACM SenSys, 2015.
[2] Yuxiao Hou, Yanwen Wang, and Yuanqing Zheng. TagBreathe: Monitor Breathing with Commodity RFID Systems. In IEEE ICDCS, 2017.



Wireless Signal

RF Signal

Transceiver

Phase
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Wireless signal-based Activity Recognition
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Wi-Fi

Low resolution

FMCW

Specialized devices 

High cost

USRP

Specialized devices 

High cost

Introduction01

Wireless signal-based Activity Recognition

▪ Low resolution
▪ High deployment cost
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Camera Sensor Wireless RFID

X LoS
X Privacy

X Intrusive
X Direct contact

X High cost
X Low resolution
X Specialized devices

√ Safe
√ NLoS
√ Convenient
√ Contact free
√ Non-intrusive
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Contact-free

Signal reflection model

RFID

Methodology02
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Reader
Tag

Methodology02
RFID System
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➢ If the signal propagation distance 
changes continuously, the signal 
phase will change from [0,2π]

➢ If the signal propagation distance 

changes one wavelength, the 

signal phase will change 2π

Reader

Phase change of the signal

𝜆/2 𝜆0 3𝜆/2

Methodology02
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If RFID tags are attached on human body (clothes), 
one may infer the type of human activity

???



Contact-free Activity Recognition 
-----The TACT System

Reflection model for contact-free activity recognition
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• Preliminary experiments 

Understanding the Reflection of RFID Signal

➢The phase values continuously changed 
and exhibited a periodic pattern.

➢The range of phase values was only 
around 0.2, which was much smaller 
than 2π 14

motionless tag

motionless reader

Signal propagation distance change



Static Virtual Point: 
All the signal reflected 
from static objects & LoS

Object moving:
Moving from A to B

Signal Reflection Model

▪ When the object moves,  the dynamic component rotates
▪ The combined phase reaches maximum and  minimum at 

two tangent points
▪ The combined phase periodically changes
▪ The combined phase range is 𝚫𝜽

In-phase and Quadrature components

Q

I

𝚫𝜽

Phase Change of Signal
Signal Reflection model Static component

dynamic component

combined component

Methodology02

15



Signal Reflection model
Methodology02
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0 1
Signal phase 

∈[𝜽,𝜽+𝚫𝜽],𝚫𝛉<𝟐𝛑;

0 2

The phase waveform 
may not be a standard 

sinusoid form

0 3

Dynamic & 
Combined share 

same period



Phase waveform

DTW

Time Duration

Variance

Speed

STFT

Distance

Phase difference

Feature Extraction
Methodology02
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Misalignment 
Elastic 

Property 

Different activities have different phase waveforms, 
while same activities share similar phase waveforms

Dynamic Time Warping (DTW)

Unknown waveform

Methodology02

❖Phase waveform
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❖Time Duration

Objective: To segment the data corresponding to human activities

The variance of phase readings 
can serve as a good indicator for 
activity segmentation.

Methodology02

19



Objective: To measure the moving speed of different 
activities.

𝑣 = 𝑓 × 𝜆

A faster movement results in more rapid 
fluctuation of phase waveform --- the 
frequency of phase waveform.

Method: Short-Time Fourier Transform 
(STFT)
⚫ Instantaneously frequency

Spectrogram of walking and falling

walking falling

Methodology02

❖Moving speed
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Objective: To measure the moving distance of different activities.

𝐷 = 

𝑖=1

𝑁−1
𝜆

2𝛥𝜃
× (|𝜃𝑖+1 − 𝜃𝑖|)

Extract distance from phase difference of 2 consecutive phases.

𝐷 = 

𝑖=1

𝑁−1
𝜆

2π
× (|𝜃𝑖+1 − 𝜃𝑖|)

Methodology02

❖Moving distance
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Coarse-grained features: duration of activity, speed, distance 

Fine-grained features: phase waveform

T V D 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6T V D

Random Forestunknown

Tag1: Activity ranking

Tag2: Activity ranking

Tag3: Activity ranking

average Activity 
ranking

𝑑7 𝑑8

𝑑7 𝑑8

Methodology02

❖Classification

Fine-grainedCoarse-grained
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System Performance

Robustness

Extracted Features

Evaluation03
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Experiment settings

COTS RFID System

◆ Impinj R420 Reader

◆Commodity passive tags

◆Directional Antenna

Room C

X 12

640 traces for training 
1280 traces for evaluation
10-fold cross-validation

Evaluation03

Room A

◆Small size with 3m*2m

◆ Large size with 10m*8m

Room B

◆Median size with 8m*6m
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▪ The speeds of falling and walking significantly differ with other activities

▪ Walking has longer moving distances

▪ Other activities are difficult to distinguish

▪ Only using coarse-grained feature may not work

Extracted FeaturesEvaluation03

Coarse-
grained 
features

58%

25

Fall

Walk



81%

System Performance
Evaluation03

Fine-grained features

8 DTW distances
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Combined 
features

93%

System Performance
Evaluation03

Fine-grained + Coarse-grained features

27



Compare to existing work

RF-Care: Lina Yao, Quan Z. Sheng, Wenjie Ruan, Tao Gu, Xue Li, Nick Falkner, and Zhi Yang. 2015. RF-Care: Device-Free Posture Recognition for Elderly People Using A Passive 

RFID Tag Array. In proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS’15).

Six classifiers

System Performance

Evaluation03

Our TACT system significantly outperforms 
RF-Care 
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Robustness
Evaluation03

Deploying multiple tags indeed can improve the 
system performance

Environment has relatively small impact on the 
performance
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Conclusion
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Conclusion04
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Thanks!

Yanwen Wang       Yuanqing Zheng

UbiComp 2019, London
September 11th, 2019

The Hong Kong Polytechnic University, China



ExtractionPre-process IdentificationClassification

Data

Remove 

Frequency 

Hopping

Features

Coarse-grained 

Fine-grained 

Features

Classifier

Random Forest, 

Neural Network, 

Decision Tree, 

SVM, Naïve 

Bayesian, QDA

Activities

Walking, Falling, 

Sitting, Standing, 

Raisehand, Drophand, 

Rotation, Get-up

Methodology02
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